File size: 4,133 Bytes
8da79d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
149d42c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8da79d7
 
149d42c
8da79d7
 
 
 
 
 
149d42c
 
 
8da79d7
 
149d42c
 
8da79d7
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import re
import pandas as pd
import googleapiclient.discovery
import plotly.express as px 

# Load the BERT tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")


# Set up the YouTube API service
api_service_name = "youtube"
api_version = "v3"
DEVELOPER_KEY = "AIzaSyC4Vx8G6nm3Ow9xq7NluTuCCJ1d_5w4YPE"  # Replace with your actual API key

youtube = googleapiclient.discovery.build(api_service_name, api_version, developerKey=DEVELOPER_KEY)

# Function to fetch comments for a video ID
def scrape_comments(video_id):
    request = youtube.commentThreads().list(
        part="snippet",
        videoId=video_id,
        maxResults=100
    )
    response = request.execute()


    comments = []

    for item in response['items']:
        comment = item['snippet']['topLevelComment']['snippet']
        comments.append([
            comment['textDisplay']
        ])

    comments_df = pd.DataFrame(comments, columns=['comment'])

    # df.head(10).

    return comments_df


# Function to extract video ID from YouTube URL
def extract_video_id(video_url):
    match = re.search(r'(?<=v=)[\w-]+', video_url)
    if match:
        return match.group(0)
    else:
        st.error("Invalid YouTube video URL")

# Function to fetch YouTube comments for a video ID
def fetch_comments(video_id):
    # Example using youtube-comment-scraper-python library
    comments = scrape_comments(video_id)
    return comments

# Function to analyze sentiment for a single comment
def analyze_sentiment(comment):
    tokens = tokenizer.encode(comment, return_tensors="pt", max_length=512, truncation=True)
    # input_ids = tokens['input_ids']
    # attention_mask = tokens['attention_mask']

    # result = model(input_ids, attention_mask=attention_mask)
    result = model(tokens)

    sentiment_id = torch.argmax(result.logits) + 1
    if(sentiment_id > 3):
        sentiment_label = "Positive"
    elif(sentiment_id < 3):
        sentiment_label = "Negative"
    else:
        sentiment_label = "Neutral"

    return sentiment_label


def main():
    st.title("YouTube Comments Sentiment Analysis")
    
    # Create sidebar section for app description and links
    st.sidebar.title("App Information")
    st.sidebar.write("Welcome to the YouTube Comments Sentiment Analysis App.")
    st.sidebar.write("This app extracts comments from a YouTube video and analyzes their sentiment.")
    st.sidebar.write("Feel free to check out our other apps:")
    
    # Dropdown menu for other app links
    app_links = {
        "App 1": "https://your-app-1-url.com",
        "App 2": "https://your-app-2-url.com"
    }
    selected_app = st.sidebar.selectbox("Select an App", list(app_links.keys()))
    if st.sidebar.button("Go to App"):
        st.sidebar.write(f"You are now redirected to {selected_app}")
        st.sidebar.write(f"Link: {app_links[selected_app]}")
        st.sidebar.success("Redirected successfully!")
    
    st.write("Enter a YouTube video link below:")
    video_url = st.text_input("YouTube Video URL:")
    
    if st.button("Extract Comments and Analyze"):
        video_id = extract_video_id(video_url)
        if video_id:
            comments_df = fetch_comments(video_id)
            comments_df['sentiment'] = comments_df['comment'].apply(lambda x: analyze_sentiment(x[:512]))
            sentiment_counts = comments_df['sentiment'].value_counts()
            
            # Create pie chart
            fig_pie = px.pie(values=sentiment_counts.values, names=sentiment_counts.index, title='Sentiment Distribution')
            st.plotly_chart(fig_pie, use_container_width=True)

            # Create bar chart
            fig_bar = px.bar(x=sentiment_counts.index, y=sentiment_counts.values, labels={'x': 'Sentiment', 'y': 'Count'}, title='Sentiment Counts')
            st.plotly_chart(fig_bar)


if __name__ == "__main__":
    main()