Spaces:
Build error
Build error
File size: 16,533 Bytes
c2dad70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 |
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from collections import defaultdict
from contextlib import contextmanager
import math
import os
import tempfile
import typing as tp
import errno
import functools
import hashlib
import inspect
import io
import os
import random
import socket
import tempfile
import warnings
import zlib
import tkinter as tk
from diffq import UniformQuantizer, DiffQuantizer
import torch as th
import tqdm
from torch import distributed
from torch.nn import functional as F
import torch
def unfold(a, kernel_size, stride):
"""Given input of size [*OT, T], output Tensor of size [*OT, F, K]
with K the kernel size, by extracting frames with the given stride.
This will pad the input so that `F = ceil(T / K)`.
see https://github.com/pytorch/pytorch/issues/60466
"""
*shape, length = a.shape
n_frames = math.ceil(length / stride)
tgt_length = (n_frames - 1) * stride + kernel_size
a = F.pad(a, (0, tgt_length - length))
strides = list(a.stride())
assert strides[-1] == 1, 'data should be contiguous'
strides = strides[:-1] + [stride, 1]
return a.as_strided([*shape, n_frames, kernel_size], strides)
def center_trim(tensor: torch.Tensor, reference: tp.Union[torch.Tensor, int]):
"""
Center trim `tensor` with respect to `reference`, along the last dimension.
`reference` can also be a number, representing the length to trim to.
If the size difference != 0 mod 2, the extra sample is removed on the right side.
"""
ref_size: int
if isinstance(reference, torch.Tensor):
ref_size = reference.size(-1)
else:
ref_size = reference
delta = tensor.size(-1) - ref_size
if delta < 0:
raise ValueError("tensor must be larger than reference. " f"Delta is {delta}.")
if delta:
tensor = tensor[..., delta // 2:-(delta - delta // 2)]
return tensor
def pull_metric(history: tp.List[dict], name: str):
out = []
for metrics in history:
metric = metrics
for part in name.split("."):
metric = metric[part]
out.append(metric)
return out
def EMA(beta: float = 1):
"""
Exponential Moving Average callback.
Returns a single function that can be called to repeatidly update the EMA
with a dict of metrics. The callback will return
the new averaged dict of metrics.
Note that for `beta=1`, this is just plain averaging.
"""
fix: tp.Dict[str, float] = defaultdict(float)
total: tp.Dict[str, float] = defaultdict(float)
def _update(metrics: dict, weight: float = 1) -> dict:
nonlocal total, fix
for key, value in metrics.items():
total[key] = total[key] * beta + weight * float(value)
fix[key] = fix[key] * beta + weight
return {key: tot / fix[key] for key, tot in total.items()}
return _update
def sizeof_fmt(num: float, suffix: str = 'B'):
"""
Given `num` bytes, return human readable size.
Taken from https://stackoverflow.com/a/1094933
"""
for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']:
if abs(num) < 1024.0:
return "%3.1f%s%s" % (num, unit, suffix)
num /= 1024.0
return "%.1f%s%s" % (num, 'Yi', suffix)
@contextmanager
def temp_filenames(count: int, delete=True):
names = []
try:
for _ in range(count):
names.append(tempfile.NamedTemporaryFile(delete=False).name)
yield names
finally:
if delete:
for name in names:
os.unlink(name)
def average_metric(metric, count=1.):
"""
Average `metric` which should be a float across all hosts. `count` should be
the weight for this particular host (i.e. number of examples).
"""
metric = th.tensor([count, count * metric], dtype=th.float32, device='cuda')
distributed.all_reduce(metric, op=distributed.ReduceOp.SUM)
return metric[1].item() / metric[0].item()
def free_port(host='', low=20000, high=40000):
"""
Return a port number that is most likely free.
This could suffer from a race condition although
it should be quite rare.
"""
sock = socket.socket()
while True:
port = random.randint(low, high)
try:
sock.bind((host, port))
except OSError as error:
if error.errno == errno.EADDRINUSE:
continue
raise
return port
def sizeof_fmt(num, suffix='B'):
"""
Given `num` bytes, return human readable size.
Taken from https://stackoverflow.com/a/1094933
"""
for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']:
if abs(num) < 1024.0:
return "%3.1f%s%s" % (num, unit, suffix)
num /= 1024.0
return "%.1f%s%s" % (num, 'Yi', suffix)
def human_seconds(seconds, display='.2f'):
"""
Given `seconds` seconds, return human readable duration.
"""
value = seconds * 1e6
ratios = [1e3, 1e3, 60, 60, 24]
names = ['us', 'ms', 's', 'min', 'hrs', 'days']
last = names.pop(0)
for name, ratio in zip(names, ratios):
if value / ratio < 0.3:
break
value /= ratio
last = name
return f"{format(value, display)} {last}"
class TensorChunk:
def __init__(self, tensor, offset=0, length=None):
total_length = tensor.shape[-1]
assert offset >= 0
assert offset < total_length
if length is None:
length = total_length - offset
else:
length = min(total_length - offset, length)
self.tensor = tensor
self.offset = offset
self.length = length
self.device = tensor.device
@property
def shape(self):
shape = list(self.tensor.shape)
shape[-1] = self.length
return shape
def padded(self, target_length):
delta = target_length - self.length
total_length = self.tensor.shape[-1]
assert delta >= 0
start = self.offset - delta // 2
end = start + target_length
correct_start = max(0, start)
correct_end = min(total_length, end)
pad_left = correct_start - start
pad_right = end - correct_end
out = F.pad(self.tensor[..., correct_start:correct_end], (pad_left, pad_right))
assert out.shape[-1] == target_length
return out
def tensor_chunk(tensor_or_chunk):
if isinstance(tensor_or_chunk, TensorChunk):
return tensor_or_chunk
else:
assert isinstance(tensor_or_chunk, th.Tensor)
return TensorChunk(tensor_or_chunk)
def apply_model_v1(model, mix, shifts=None, split=False, progress=False, set_progress_bar=None):
"""
Apply model to a given mixture.
Args:
shifts (int): if > 0, will shift in time `mix` by a random amount between 0 and 0.5 sec
and apply the oppositve shift to the output. This is repeated `shifts` time and
all predictions are averaged. This effectively makes the model time equivariant
and improves SDR by up to 0.2 points.
split (bool): if True, the input will be broken down in 8 seconds extracts
and predictions will be performed individually on each and concatenated.
Useful for model with large memory footprint like Tasnet.
progress (bool): if True, show a progress bar (requires split=True)
"""
channels, length = mix.size()
device = mix.device
progress_value = 0
if split:
out = th.zeros(4, channels, length, device=device)
shift = model.samplerate * 10
offsets = range(0, length, shift)
scale = 10
if progress:
offsets = tqdm.tqdm(offsets, unit_scale=scale, ncols=120, unit='seconds')
for offset in offsets:
chunk = mix[..., offset:offset + shift]
if set_progress_bar:
progress_value += 1
set_progress_bar(0.1, (0.8/len(offsets)*progress_value))
chunk_out = apply_model_v1(model, chunk, shifts=shifts, set_progress_bar=set_progress_bar)
else:
chunk_out = apply_model_v1(model, chunk, shifts=shifts)
out[..., offset:offset + shift] = chunk_out
offset += shift
return out
elif shifts:
max_shift = int(model.samplerate / 2)
mix = F.pad(mix, (max_shift, max_shift))
offsets = list(range(max_shift))
random.shuffle(offsets)
out = 0
for offset in offsets[:shifts]:
shifted = mix[..., offset:offset + length + max_shift]
if set_progress_bar:
shifted_out = apply_model_v1(model, shifted, set_progress_bar=set_progress_bar)
else:
shifted_out = apply_model_v1(model, shifted)
out += shifted_out[..., max_shift - offset:max_shift - offset + length]
out /= shifts
return out
else:
valid_length = model.valid_length(length)
delta = valid_length - length
padded = F.pad(mix, (delta // 2, delta - delta // 2))
with th.no_grad():
out = model(padded.unsqueeze(0))[0]
return center_trim(out, mix)
def apply_model_v2(model, mix, shifts=None, split=False,
overlap=0.25, transition_power=1., progress=False, set_progress_bar=None):
"""
Apply model to a given mixture.
Args:
shifts (int): if > 0, will shift in time `mix` by a random amount between 0 and 0.5 sec
and apply the oppositve shift to the output. This is repeated `shifts` time and
all predictions are averaged. This effectively makes the model time equivariant
and improves SDR by up to 0.2 points.
split (bool): if True, the input will be broken down in 8 seconds extracts
and predictions will be performed individually on each and concatenated.
Useful for model with large memory footprint like Tasnet.
progress (bool): if True, show a progress bar (requires split=True)
"""
assert transition_power >= 1, "transition_power < 1 leads to weird behavior."
device = mix.device
channels, length = mix.shape
progress_value = 0
if split:
out = th.zeros(len(model.sources), channels, length, device=device)
sum_weight = th.zeros(length, device=device)
segment = model.segment_length
stride = int((1 - overlap) * segment)
offsets = range(0, length, stride)
scale = stride / model.samplerate
if progress:
offsets = tqdm.tqdm(offsets, unit_scale=scale, ncols=120, unit='seconds')
# We start from a triangle shaped weight, with maximal weight in the middle
# of the segment. Then we normalize and take to the power `transition_power`.
# Large values of transition power will lead to sharper transitions.
weight = th.cat([th.arange(1, segment // 2 + 1),
th.arange(segment - segment // 2, 0, -1)]).to(device)
assert len(weight) == segment
# If the overlap < 50%, this will translate to linear transition when
# transition_power is 1.
weight = (weight / weight.max())**transition_power
for offset in offsets:
chunk = TensorChunk(mix, offset, segment)
if set_progress_bar:
progress_value += 1
set_progress_bar(0.1, (0.8/len(offsets)*progress_value))
chunk_out = apply_model_v2(model, chunk, shifts=shifts, set_progress_bar=set_progress_bar)
else:
chunk_out = apply_model_v2(model, chunk, shifts=shifts)
chunk_length = chunk_out.shape[-1]
out[..., offset:offset + segment] += weight[:chunk_length] * chunk_out
sum_weight[offset:offset + segment] += weight[:chunk_length]
offset += segment
assert sum_weight.min() > 0
out /= sum_weight
return out
elif shifts:
max_shift = int(0.5 * model.samplerate)
mix = tensor_chunk(mix)
padded_mix = mix.padded(length + 2 * max_shift)
out = 0
for _ in range(shifts):
offset = random.randint(0, max_shift)
shifted = TensorChunk(padded_mix, offset, length + max_shift - offset)
if set_progress_bar:
progress_value += 1
shifted_out = apply_model_v2(model, shifted, set_progress_bar=set_progress_bar)
else:
shifted_out = apply_model_v2(model, shifted)
out += shifted_out[..., max_shift - offset:]
out /= shifts
return out
else:
valid_length = model.valid_length(length)
mix = tensor_chunk(mix)
padded_mix = mix.padded(valid_length)
with th.no_grad():
out = model(padded_mix.unsqueeze(0))[0]
return center_trim(out, length)
@contextmanager
def temp_filenames(count, delete=True):
names = []
try:
for _ in range(count):
names.append(tempfile.NamedTemporaryFile(delete=False).name)
yield names
finally:
if delete:
for name in names:
os.unlink(name)
def get_quantizer(model, args, optimizer=None):
quantizer = None
if args.diffq:
quantizer = DiffQuantizer(
model, min_size=args.q_min_size, group_size=8)
if optimizer is not None:
quantizer.setup_optimizer(optimizer)
elif args.qat:
quantizer = UniformQuantizer(
model, bits=args.qat, min_size=args.q_min_size)
return quantizer
def load_model(path, strict=False):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
load_from = path
package = th.load(load_from, 'cpu')
klass = package["klass"]
args = package["args"]
kwargs = package["kwargs"]
if strict:
model = klass(*args, **kwargs)
else:
sig = inspect.signature(klass)
for key in list(kwargs):
if key not in sig.parameters:
warnings.warn("Dropping inexistant parameter " + key)
del kwargs[key]
model = klass(*args, **kwargs)
state = package["state"]
training_args = package["training_args"]
quantizer = get_quantizer(model, training_args)
set_state(model, quantizer, state)
return model
def get_state(model, quantizer):
if quantizer is None:
state = {k: p.data.to('cpu') for k, p in model.state_dict().items()}
else:
state = quantizer.get_quantized_state()
buf = io.BytesIO()
th.save(state, buf)
state = {'compressed': zlib.compress(buf.getvalue())}
return state
def set_state(model, quantizer, state):
if quantizer is None:
model.load_state_dict(state)
else:
buf = io.BytesIO(zlib.decompress(state["compressed"]))
state = th.load(buf, "cpu")
quantizer.restore_quantized_state(state)
return state
def save_state(state, path):
buf = io.BytesIO()
th.save(state, buf)
sig = hashlib.sha256(buf.getvalue()).hexdigest()[:8]
path = path.parent / (path.stem + "-" + sig + path.suffix)
path.write_bytes(buf.getvalue())
def save_model(model, quantizer, training_args, path):
args, kwargs = model._init_args_kwargs
klass = model.__class__
state = get_state(model, quantizer)
save_to = path
package = {
'klass': klass,
'args': args,
'kwargs': kwargs,
'state': state,
'training_args': training_args,
}
th.save(package, save_to)
def capture_init(init):
@functools.wraps(init)
def __init__(self, *args, **kwargs):
self._init_args_kwargs = (args, kwargs)
init(self, *args, **kwargs)
return __init__
class DummyPoolExecutor:
class DummyResult:
def __init__(self, func, *args, **kwargs):
self.func = func
self.args = args
self.kwargs = kwargs
def result(self):
return self.func(*self.args, **self.kwargs)
def __init__(self, workers=0):
pass
def submit(self, func, *args, **kwargs):
return DummyPoolExecutor.DummyResult(func, *args, **kwargs)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, exc_tb):
return
|