r3gm's picture
Upload 224 files
c2dad70
# Copyright (c) 2019-present, Meta, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# First author is Simon Rouard.
import random
import typing as tp
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
from einops import rearrange
def create_sin_embedding(
length: int, dim: int, shift: int = 0, device="cpu", max_period=10000
):
# We aim for TBC format
assert dim % 2 == 0
pos = shift + torch.arange(length, device=device).view(-1, 1, 1)
half_dim = dim // 2
adim = torch.arange(dim // 2, device=device).view(1, 1, -1)
phase = pos / (max_period ** (adim / (half_dim - 1)))
return torch.cat(
[
torch.cos(phase),
torch.sin(phase),
],
dim=-1,
)
def create_2d_sin_embedding(d_model, height, width, device="cpu", max_period=10000):
"""
:param d_model: dimension of the model
:param height: height of the positions
:param width: width of the positions
:return: d_model*height*width position matrix
"""
if d_model % 4 != 0:
raise ValueError(
"Cannot use sin/cos positional encoding with "
"odd dimension (got dim={:d})".format(d_model)
)
pe = torch.zeros(d_model, height, width)
# Each dimension use half of d_model
d_model = int(d_model / 2)
div_term = torch.exp(
torch.arange(0.0, d_model, 2) * -(math.log(max_period) / d_model)
)
pos_w = torch.arange(0.0, width).unsqueeze(1)
pos_h = torch.arange(0.0, height).unsqueeze(1)
pe[0:d_model:2, :, :] = (
torch.sin(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1)
)
pe[1:d_model:2, :, :] = (
torch.cos(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1)
)
pe[d_model::2, :, :] = (
torch.sin(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width)
)
pe[d_model + 1:: 2, :, :] = (
torch.cos(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width)
)
return pe[None, :].to(device)
def create_sin_embedding_cape(
length: int,
dim: int,
batch_size: int,
mean_normalize: bool,
augment: bool, # True during training
max_global_shift: float = 0.0, # delta max
max_local_shift: float = 0.0, # epsilon max
max_scale: float = 1.0,
device: str = "cpu",
max_period: float = 10000.0,
):
# We aim for TBC format
assert dim % 2 == 0
pos = 1.0 * torch.arange(length).view(-1, 1, 1) # (length, 1, 1)
pos = pos.repeat(1, batch_size, 1) # (length, batch_size, 1)
if mean_normalize:
pos -= torch.nanmean(pos, dim=0, keepdim=True)
if augment:
delta = np.random.uniform(
-max_global_shift, +max_global_shift, size=[1, batch_size, 1]
)
delta_local = np.random.uniform(
-max_local_shift, +max_local_shift, size=[length, batch_size, 1]
)
log_lambdas = np.random.uniform(
-np.log(max_scale), +np.log(max_scale), size=[1, batch_size, 1]
)
pos = (pos + delta + delta_local) * np.exp(log_lambdas)
pos = pos.to(device)
half_dim = dim // 2
adim = torch.arange(dim // 2, device=device).view(1, 1, -1)
phase = pos / (max_period ** (adim / (half_dim - 1)))
return torch.cat(
[
torch.cos(phase),
torch.sin(phase),
],
dim=-1,
).float()
def get_causal_mask(length):
pos = torch.arange(length)
return pos > pos[:, None]
def get_elementary_mask(
T1,
T2,
mask_type,
sparse_attn_window,
global_window,
mask_random_seed,
sparsity,
device,
):
"""
When the input of the Decoder has length T1 and the output T2
The mask matrix has shape (T2, T1)
"""
assert mask_type in ["diag", "jmask", "random", "global"]
if mask_type == "global":
mask = torch.zeros(T2, T1, dtype=torch.bool)
mask[:, :global_window] = True
line_window = int(global_window * T2 / T1)
mask[:line_window, :] = True
if mask_type == "diag":
mask = torch.zeros(T2, T1, dtype=torch.bool)
rows = torch.arange(T2)[:, None]
cols = (
(T1 / T2 * rows + torch.arange(-sparse_attn_window, sparse_attn_window + 1))
.long()
.clamp(0, T1 - 1)
)
mask.scatter_(1, cols, torch.ones(1, dtype=torch.bool).expand_as(cols))
elif mask_type == "jmask":
mask = torch.zeros(T2 + 2, T1 + 2, dtype=torch.bool)
rows = torch.arange(T2 + 2)[:, None]
t = torch.arange(0, int((2 * T1) ** 0.5 + 1))
t = (t * (t + 1) / 2).int()
t = torch.cat([-t.flip(0)[:-1], t])
cols = (T1 / T2 * rows + t).long().clamp(0, T1 + 1)
mask.scatter_(1, cols, torch.ones(1, dtype=torch.bool).expand_as(cols))
mask = mask[1:-1, 1:-1]
elif mask_type == "random":
gene = torch.Generator(device=device)
gene.manual_seed(mask_random_seed)
mask = (
torch.rand(T1 * T2, generator=gene, device=device).reshape(T2, T1)
> sparsity
)
mask = mask.to(device)
return mask
def get_mask(
T1,
T2,
mask_type,
sparse_attn_window,
global_window,
mask_random_seed,
sparsity,
device,
):
"""
Return a SparseCSRTensor mask that is a combination of elementary masks
mask_type can be a combination of multiple masks: for instance "diag_jmask_random"
"""
from xformers.sparse import SparseCSRTensor
# create a list
mask_types = mask_type.split("_")
all_masks = [
get_elementary_mask(
T1,
T2,
mask,
sparse_attn_window,
global_window,
mask_random_seed,
sparsity,
device,
)
for mask in mask_types
]
final_mask = torch.stack(all_masks).sum(axis=0) > 0
return SparseCSRTensor.from_dense(final_mask[None])
class ScaledEmbedding(nn.Module):
def __init__(
self,
num_embeddings: int,
embedding_dim: int,
scale: float = 1.0,
boost: float = 3.0,
):
super().__init__()
self.embedding = nn.Embedding(num_embeddings, embedding_dim)
self.embedding.weight.data *= scale / boost
self.boost = boost
@property
def weight(self):
return self.embedding.weight * self.boost
def forward(self, x):
return self.embedding(x) * self.boost
class LayerScale(nn.Module):
"""Layer scale from [Touvron et al 2021] (https://arxiv.org/pdf/2103.17239.pdf).
This rescales diagonaly residual outputs close to 0 initially, then learnt.
"""
def __init__(self, channels: int, init: float = 0, channel_last=False):
"""
channel_last = False corresponds to (B, C, T) tensors
channel_last = True corresponds to (T, B, C) tensors
"""
super().__init__()
self.channel_last = channel_last
self.scale = nn.Parameter(torch.zeros(channels, requires_grad=True))
self.scale.data[:] = init
def forward(self, x):
if self.channel_last:
return self.scale * x
else:
return self.scale[:, None] * x
class MyGroupNorm(nn.GroupNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, x):
"""
x: (B, T, C)
if num_groups=1: Normalisation on all T and C together for each B
"""
x = x.transpose(1, 2)
return super().forward(x).transpose(1, 2)
class MyTransformerEncoderLayer(nn.TransformerEncoderLayer):
def __init__(
self,
d_model,
nhead,
dim_feedforward=2048,
dropout=0.1,
activation=F.relu,
group_norm=0,
norm_first=False,
norm_out=False,
layer_norm_eps=1e-5,
layer_scale=False,
init_values=1e-4,
device=None,
dtype=None,
sparse=False,
mask_type="diag",
mask_random_seed=42,
sparse_attn_window=500,
global_window=50,
auto_sparsity=False,
sparsity=0.95,
batch_first=False,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__(
d_model=d_model,
nhead=nhead,
dim_feedforward=dim_feedforward,
dropout=dropout,
activation=activation,
layer_norm_eps=layer_norm_eps,
batch_first=batch_first,
norm_first=norm_first,
device=device,
dtype=dtype,
)
self.sparse = sparse
self.auto_sparsity = auto_sparsity
if sparse:
if not auto_sparsity:
self.mask_type = mask_type
self.sparse_attn_window = sparse_attn_window
self.global_window = global_window
self.sparsity = sparsity
if group_norm:
self.norm1 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
self.norm2 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
self.norm_out = None
if self.norm_first & norm_out:
self.norm_out = MyGroupNorm(num_groups=int(norm_out), num_channels=d_model)
self.gamma_1 = (
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
)
self.gamma_2 = (
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
)
if sparse:
self.self_attn = MultiheadAttention(
d_model, nhead, dropout=dropout, batch_first=batch_first,
auto_sparsity=sparsity if auto_sparsity else 0,
)
self.__setattr__("src_mask", torch.zeros(1, 1))
self.mask_random_seed = mask_random_seed
def forward(self, src, src_mask=None, src_key_padding_mask=None):
"""
if batch_first = False, src shape is (T, B, C)
the case where batch_first=True is not covered
"""
device = src.device
x = src
T, B, C = x.shape
if self.sparse and not self.auto_sparsity:
assert src_mask is None
src_mask = self.src_mask
if src_mask.shape[-1] != T:
src_mask = get_mask(
T,
T,
self.mask_type,
self.sparse_attn_window,
self.global_window,
self.mask_random_seed,
self.sparsity,
device,
)
self.__setattr__("src_mask", src_mask)
if self.norm_first:
x = x + self.gamma_1(
self._sa_block(self.norm1(x), src_mask, src_key_padding_mask)
)
x = x + self.gamma_2(self._ff_block(self.norm2(x)))
if self.norm_out:
x = self.norm_out(x)
else:
x = self.norm1(
x + self.gamma_1(self._sa_block(x, src_mask, src_key_padding_mask))
)
x = self.norm2(x + self.gamma_2(self._ff_block(x)))
return x
class CrossTransformerEncoderLayer(nn.Module):
def __init__(
self,
d_model: int,
nhead: int,
dim_feedforward: int = 2048,
dropout: float = 0.1,
activation=F.relu,
layer_norm_eps: float = 1e-5,
layer_scale: bool = False,
init_values: float = 1e-4,
norm_first: bool = False,
group_norm: bool = False,
norm_out: bool = False,
sparse=False,
mask_type="diag",
mask_random_seed=42,
sparse_attn_window=500,
global_window=50,
sparsity=0.95,
auto_sparsity=None,
device=None,
dtype=None,
batch_first=False,
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.sparse = sparse
self.auto_sparsity = auto_sparsity
if sparse:
if not auto_sparsity:
self.mask_type = mask_type
self.sparse_attn_window = sparse_attn_window
self.global_window = global_window
self.sparsity = sparsity
self.cross_attn: nn.Module
self.cross_attn = nn.MultiheadAttention(
d_model, nhead, dropout=dropout, batch_first=batch_first)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward, **factory_kwargs)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model, **factory_kwargs)
self.norm_first = norm_first
self.norm1: nn.Module
self.norm2: nn.Module
self.norm3: nn.Module
if group_norm:
self.norm1 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
self.norm2 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
self.norm3 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
else:
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
self.norm3 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
self.norm_out = None
if self.norm_first & norm_out:
self.norm_out = MyGroupNorm(num_groups=int(norm_out), num_channels=d_model)
self.gamma_1 = (
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
)
self.gamma_2 = (
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
# Legacy string support for activation function.
if isinstance(activation, str):
self.activation = self._get_activation_fn(activation)
else:
self.activation = activation
if sparse:
self.cross_attn = MultiheadAttention(
d_model, nhead, dropout=dropout, batch_first=batch_first,
auto_sparsity=sparsity if auto_sparsity else 0)
if not auto_sparsity:
self.__setattr__("mask", torch.zeros(1, 1))
self.mask_random_seed = mask_random_seed
def forward(self, q, k, mask=None):
"""
Args:
q: tensor of shape (T, B, C)
k: tensor of shape (S, B, C)
mask: tensor of shape (T, S)
"""
device = q.device
T, B, C = q.shape
S, B, C = k.shape
if self.sparse and not self.auto_sparsity:
assert mask is None
mask = self.mask
if mask.shape[-1] != S or mask.shape[-2] != T:
mask = get_mask(
S,
T,
self.mask_type,
self.sparse_attn_window,
self.global_window,
self.mask_random_seed,
self.sparsity,
device,
)
self.__setattr__("mask", mask)
if self.norm_first:
x = q + self.gamma_1(self._ca_block(self.norm1(q), self.norm2(k), mask))
x = x + self.gamma_2(self._ff_block(self.norm3(x)))
if self.norm_out:
x = self.norm_out(x)
else:
x = self.norm1(q + self.gamma_1(self._ca_block(q, k, mask)))
x = self.norm2(x + self.gamma_2(self._ff_block(x)))
return x
# self-attention block
def _ca_block(self, q, k, attn_mask=None):
x = self.cross_attn(q, k, k, attn_mask=attn_mask, need_weights=False)[0]
return self.dropout1(x)
# feed forward block
def _ff_block(self, x):
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
return self.dropout2(x)
def _get_activation_fn(self, activation):
if activation == "relu":
return F.relu
elif activation == "gelu":
return F.gelu
raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
# ----------------- MULTI-BLOCKS MODELS: -----------------------
class CrossTransformerEncoder(nn.Module):
def __init__(
self,
dim: int,
emb: str = "sin",
hidden_scale: float = 4.0,
num_heads: int = 8,
num_layers: int = 6,
cross_first: bool = False,
dropout: float = 0.0,
max_positions: int = 1000,
norm_in: bool = True,
norm_in_group: bool = False,
group_norm: int = False,
norm_first: bool = False,
norm_out: bool = False,
max_period: float = 10000.0,
weight_decay: float = 0.0,
lr: tp.Optional[float] = None,
layer_scale: bool = False,
gelu: bool = True,
sin_random_shift: int = 0,
weight_pos_embed: float = 1.0,
cape_mean_normalize: bool = True,
cape_augment: bool = True,
cape_glob_loc_scale: list = [5000.0, 1.0, 1.4],
sparse_self_attn: bool = False,
sparse_cross_attn: bool = False,
mask_type: str = "diag",
mask_random_seed: int = 42,
sparse_attn_window: int = 500,
global_window: int = 50,
auto_sparsity: bool = False,
sparsity: float = 0.95,
):
super().__init__()
"""
"""
assert dim % num_heads == 0
hidden_dim = int(dim * hidden_scale)
self.num_layers = num_layers
# classic parity = 1 means that if idx%2 == 1 there is a
# classical encoder else there is a cross encoder
self.classic_parity = 1 if cross_first else 0
self.emb = emb
self.max_period = max_period
self.weight_decay = weight_decay
self.weight_pos_embed = weight_pos_embed
self.sin_random_shift = sin_random_shift
if emb == "cape":
self.cape_mean_normalize = cape_mean_normalize
self.cape_augment = cape_augment
self.cape_glob_loc_scale = cape_glob_loc_scale
if emb == "scaled":
self.position_embeddings = ScaledEmbedding(max_positions, dim, scale=0.2)
self.lr = lr
activation: tp.Any = F.gelu if gelu else F.relu
self.norm_in: nn.Module
self.norm_in_t: nn.Module
if norm_in:
self.norm_in = nn.LayerNorm(dim)
self.norm_in_t = nn.LayerNorm(dim)
elif norm_in_group:
self.norm_in = MyGroupNorm(int(norm_in_group), dim)
self.norm_in_t = MyGroupNorm(int(norm_in_group), dim)
else:
self.norm_in = nn.Identity()
self.norm_in_t = nn.Identity()
# spectrogram layers
self.layers = nn.ModuleList()
# temporal layers
self.layers_t = nn.ModuleList()
kwargs_common = {
"d_model": dim,
"nhead": num_heads,
"dim_feedforward": hidden_dim,
"dropout": dropout,
"activation": activation,
"group_norm": group_norm,
"norm_first": norm_first,
"norm_out": norm_out,
"layer_scale": layer_scale,
"mask_type": mask_type,
"mask_random_seed": mask_random_seed,
"sparse_attn_window": sparse_attn_window,
"global_window": global_window,
"sparsity": sparsity,
"auto_sparsity": auto_sparsity,
"batch_first": True,
}
kwargs_classic_encoder = dict(kwargs_common)
kwargs_classic_encoder.update({
"sparse": sparse_self_attn,
})
kwargs_cross_encoder = dict(kwargs_common)
kwargs_cross_encoder.update({
"sparse": sparse_cross_attn,
})
for idx in range(num_layers):
if idx % 2 == self.classic_parity:
self.layers.append(MyTransformerEncoderLayer(**kwargs_classic_encoder))
self.layers_t.append(
MyTransformerEncoderLayer(**kwargs_classic_encoder)
)
else:
self.layers.append(CrossTransformerEncoderLayer(**kwargs_cross_encoder))
self.layers_t.append(
CrossTransformerEncoderLayer(**kwargs_cross_encoder)
)
def forward(self, x, xt):
B, C, Fr, T1 = x.shape
pos_emb_2d = create_2d_sin_embedding(
C, Fr, T1, x.device, self.max_period
) # (1, C, Fr, T1)
pos_emb_2d = rearrange(pos_emb_2d, "b c fr t1 -> b (t1 fr) c")
x = rearrange(x, "b c fr t1 -> b (t1 fr) c")
x = self.norm_in(x)
x = x + self.weight_pos_embed * pos_emb_2d
B, C, T2 = xt.shape
xt = rearrange(xt, "b c t2 -> b t2 c") # now T2, B, C
pos_emb = self._get_pos_embedding(T2, B, C, x.device)
pos_emb = rearrange(pos_emb, "t2 b c -> b t2 c")
xt = self.norm_in_t(xt)
xt = xt + self.weight_pos_embed * pos_emb
for idx in range(self.num_layers):
if idx % 2 == self.classic_parity:
x = self.layers[idx](x)
xt = self.layers_t[idx](xt)
else:
old_x = x
x = self.layers[idx](x, xt)
xt = self.layers_t[idx](xt, old_x)
x = rearrange(x, "b (t1 fr) c -> b c fr t1", t1=T1)
xt = rearrange(xt, "b t2 c -> b c t2")
return x, xt
def _get_pos_embedding(self, T, B, C, device):
if self.emb == "sin":
shift = random.randrange(self.sin_random_shift + 1)
pos_emb = create_sin_embedding(
T, C, shift=shift, device=device, max_period=self.max_period
)
elif self.emb == "cape":
if self.training:
pos_emb = create_sin_embedding_cape(
T,
C,
B,
device=device,
max_period=self.max_period,
mean_normalize=self.cape_mean_normalize,
augment=self.cape_augment,
max_global_shift=self.cape_glob_loc_scale[0],
max_local_shift=self.cape_glob_loc_scale[1],
max_scale=self.cape_glob_loc_scale[2],
)
else:
pos_emb = create_sin_embedding_cape(
T,
C,
B,
device=device,
max_period=self.max_period,
mean_normalize=self.cape_mean_normalize,
augment=False,
)
elif self.emb == "scaled":
pos = torch.arange(T, device=device)
pos_emb = self.position_embeddings(pos)[:, None]
return pos_emb
def make_optim_group(self):
group = {"params": list(self.parameters()), "weight_decay": self.weight_decay}
if self.lr is not None:
group["lr"] = self.lr
return group
# Attention Modules
class MultiheadAttention(nn.Module):
def __init__(
self,
embed_dim,
num_heads,
dropout=0.0,
bias=True,
add_bias_kv=False,
add_zero_attn=False,
kdim=None,
vdim=None,
batch_first=False,
auto_sparsity=None,
):
super().__init__()
assert auto_sparsity is not None, "sanity check"
self.num_heads = num_heads
self.q = torch.nn.Linear(embed_dim, embed_dim, bias=bias)
self.k = torch.nn.Linear(embed_dim, embed_dim, bias=bias)
self.v = torch.nn.Linear(embed_dim, embed_dim, bias=bias)
self.attn_drop = torch.nn.Dropout(dropout)
self.proj = torch.nn.Linear(embed_dim, embed_dim, bias)
self.proj_drop = torch.nn.Dropout(dropout)
self.batch_first = batch_first
self.auto_sparsity = auto_sparsity
def forward(
self,
query,
key,
value,
key_padding_mask=None,
need_weights=True,
attn_mask=None,
average_attn_weights=True,
):
if not self.batch_first: # N, B, C
query = query.permute(1, 0, 2) # B, N_q, C
key = key.permute(1, 0, 2) # B, N_k, C
value = value.permute(1, 0, 2) # B, N_k, C
B, N_q, C = query.shape
B, N_k, C = key.shape
q = (
self.q(query)
.reshape(B, N_q, self.num_heads, C // self.num_heads)
.permute(0, 2, 1, 3)
)
q = q.flatten(0, 1)
k = (
self.k(key)
.reshape(B, N_k, self.num_heads, C // self.num_heads)
.permute(0, 2, 1, 3)
)
k = k.flatten(0, 1)
v = (
self.v(value)
.reshape(B, N_k, self.num_heads, C // self.num_heads)
.permute(0, 2, 1, 3)
)
v = v.flatten(0, 1)
if self.auto_sparsity:
assert attn_mask is None
x = dynamic_sparse_attention(q, k, v, sparsity=self.auto_sparsity)
else:
x = scaled_dot_product_attention(q, k, v, attn_mask, dropout=self.attn_drop)
x = x.reshape(B, self.num_heads, N_q, C // self.num_heads)
x = x.transpose(1, 2).reshape(B, N_q, C)
x = self.proj(x)
x = self.proj_drop(x)
if not self.batch_first:
x = x.permute(1, 0, 2)
return x, None
def scaled_query_key_softmax(q, k, att_mask):
from xformers.ops import masked_matmul
q = q / (k.size(-1)) ** 0.5
att = masked_matmul(q, k.transpose(-2, -1), att_mask)
att = torch.nn.functional.softmax(att, -1)
return att
def scaled_dot_product_attention(q, k, v, att_mask, dropout):
att = scaled_query_key_softmax(q, k, att_mask=att_mask)
att = dropout(att)
y = att @ v
return y
def _compute_buckets(x, R):
qq = torch.einsum('btf,bfhi->bhti', x, R)
qq = torch.cat([qq, -qq], dim=-1)
buckets = qq.argmax(dim=-1)
return buckets.permute(0, 2, 1).byte().contiguous()
def dynamic_sparse_attention(query, key, value, sparsity, infer_sparsity=True, attn_bias=None):
# assert False, "The code for the custom sparse kernel is not ready for release yet."
from xformers.ops import find_locations, sparse_memory_efficient_attention
n_hashes = 32
proj_size = 4
query, key, value = [x.contiguous() for x in [query, key, value]]
with torch.no_grad():
R = torch.randn(1, query.shape[-1], n_hashes, proj_size // 2, device=query.device)
bucket_query = _compute_buckets(query, R)
bucket_key = _compute_buckets(key, R)
row_offsets, column_indices = find_locations(
bucket_query, bucket_key, sparsity, infer_sparsity)
return sparse_memory_efficient_attention(
query, key, value, row_offsets, column_indices, attn_bias)