Spaces:
Running
on
Zero
Running
on
Zero
from model.SCHP import networks | |
from model.SCHP.utils.transforms import get_affine_transform, transform_logits | |
from collections import OrderedDict | |
import torch | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
from torchvision import transforms | |
def get_palette(num_cls): | |
""" Returns the color map for visualizing the segmentation mask. | |
Args: | |
num_cls: Number of classes | |
Returns: | |
The color map | |
""" | |
n = num_cls | |
palette = [0] * (n * 3) | |
for j in range(0, n): | |
lab = j | |
palette[j * 3 + 0] = 0 | |
palette[j * 3 + 1] = 0 | |
palette[j * 3 + 2] = 0 | |
i = 0 | |
while lab: | |
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i)) | |
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i)) | |
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i)) | |
i += 1 | |
lab >>= 3 | |
return palette | |
dataset_settings = { | |
'lip': { | |
'input_size': [473, 473], | |
'num_classes': 20, | |
'label': ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat', | |
'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm', | |
'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe'] | |
}, | |
'atr': { | |
'input_size': [512, 512], | |
'num_classes': 18, | |
'label': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt', | |
'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf'] | |
}, | |
'pascal': { | |
'input_size': [512, 512], | |
'num_classes': 7, | |
'label': ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'], | |
} | |
} | |
class SCHP: | |
def __init__(self, ckpt_path, device): | |
dataset_type = None | |
if 'lip' in ckpt_path: | |
dataset_type = 'lip' | |
elif 'atr' in ckpt_path: | |
dataset_type = 'atr' | |
elif 'pascal' in ckpt_path: | |
dataset_type = 'pascal' | |
assert dataset_type is not None, 'Dataset type not found in checkpoint path' | |
self.device = device | |
self.num_classes = dataset_settings[dataset_type]['num_classes'] | |
self.input_size = dataset_settings[dataset_type]['input_size'] | |
self.aspect_ratio = self.input_size[1] * 1.0 / self.input_size[0] | |
self.palette = get_palette(self.num_classes) | |
self.label = dataset_settings[dataset_type]['label'] | |
self.model = networks.init_model('resnet101', num_classes=self.num_classes, pretrained=None).to(device) | |
self.load_ckpt(ckpt_path) | |
self.model.eval() | |
self.transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229]) | |
]) | |
self.upsample = torch.nn.Upsample(size=self.input_size, mode='bilinear', align_corners=True) | |
def load_ckpt(self, ckpt_path): | |
rename_map = { | |
"decoder.conv3.2.weight": "decoder.conv3.3.weight", | |
"decoder.conv3.3.weight": "decoder.conv3.4.weight", | |
"decoder.conv3.3.bias": "decoder.conv3.4.bias", | |
"decoder.conv3.3.running_mean": "decoder.conv3.4.running_mean", | |
"decoder.conv3.3.running_var": "decoder.conv3.4.running_var", | |
"fushion.3.weight": "fushion.4.weight", | |
"fushion.3.bias": "fushion.4.bias", | |
} | |
state_dict = torch.load(ckpt_path, map_location='cpu')['state_dict'] | |
new_state_dict = OrderedDict() | |
for k, v in state_dict.items(): | |
name = k[7:] # remove `module.` | |
new_state_dict[name] = v | |
new_state_dict_ = OrderedDict() | |
for k, v in list(new_state_dict.items()): | |
if k in rename_map: | |
new_state_dict_[rename_map[k]] = v | |
else: | |
new_state_dict_[k] = v | |
self.model.load_state_dict(new_state_dict_, strict=False) | |
def _box2cs(self, box): | |
x, y, w, h = box[:4] | |
return self._xywh2cs(x, y, w, h) | |
def _xywh2cs(self, x, y, w, h): | |
center = np.zeros((2), dtype=np.float32) | |
center[0] = x + w * 0.5 | |
center[1] = y + h * 0.5 | |
if w > self.aspect_ratio * h: | |
h = w * 1.0 / self.aspect_ratio | |
elif w < self.aspect_ratio * h: | |
w = h * self.aspect_ratio | |
scale = np.array([w, h], dtype=np.float32) | |
return center, scale | |
def preprocess(self, image): | |
if isinstance(image, str): | |
img = cv2.imread(image, cv2.IMREAD_COLOR) | |
elif isinstance(image, Image.Image): | |
# to cv2 format | |
img = np.array(image) | |
h, w, _ = img.shape | |
# Get person center and scale | |
person_center, s = self._box2cs([0, 0, w - 1, h - 1]) | |
r = 0 | |
trans = get_affine_transform(person_center, s, r, self.input_size) | |
input = cv2.warpAffine( | |
img, | |
trans, | |
(int(self.input_size[1]), int(self.input_size[0])), | |
flags=cv2.INTER_LINEAR, | |
borderMode=cv2.BORDER_CONSTANT, | |
borderValue=(0, 0, 0)) | |
input = self.transform(input).to(self.device).unsqueeze(0) | |
meta = { | |
'center': person_center, | |
'height': h, | |
'width': w, | |
'scale': s, | |
'rotation': r | |
} | |
return input, meta | |
def __call__(self, image_or_path): | |
if isinstance(image_or_path, list): | |
image_list = [] | |
meta_list = [] | |
for image in image_or_path: | |
image, meta = self.preprocess(image) | |
image_list.append(image) | |
meta_list.append(meta) | |
image = torch.cat(image_list, dim=0) | |
else: | |
image, meta = self.preprocess(image_or_path) | |
meta_list = [meta] | |
output = self.model(image) | |
# upsample_outputs = self.upsample(output[0][-1]) | |
upsample_outputs = self.upsample(output) | |
upsample_outputs = upsample_outputs.permute(0, 2, 3, 1) # BCHW -> BHWC | |
output_img_list = [] | |
for upsample_output, meta in zip(upsample_outputs, meta_list): | |
c, s, w, h = meta['center'], meta['scale'], meta['width'], meta['height'] | |
logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=self.input_size) | |
parsing_result = np.argmax(logits_result, axis=2) | |
output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8)) | |
output_img.putpalette(self.palette) | |
output_img_list.append(output_img) | |
return output_img_list[0] if len(output_img_list) == 1 else output_img_list |