Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
# -*- encoding: utf-8 -*- | |
""" | |
@Author : Peike Li | |
@Contact : peike.li@yahoo.com | |
@File : AugmentCE2P.py | |
@Time : 8/4/19 3:35 PM | |
@Desc : | |
@License : This source code is licensed under the license found in the | |
LICENSE file in the root directory of this source tree. | |
""" | |
import torch | |
import torch.nn as nn | |
from torch.nn import functional as F | |
from torch.nn import BatchNorm2d, LeakyReLU | |
affine_par = True | |
pretrained_settings = { | |
'resnet101': { | |
'imagenet': { | |
'input_space': 'BGR', | |
'input_size': [3, 224, 224], | |
'input_range': [0, 1], | |
'mean': [0.406, 0.456, 0.485], | |
'std': [0.225, 0.224, 0.229], | |
'num_classes': 1000 | |
} | |
}, | |
} | |
def conv3x3(in_planes, out_planes, stride=1): | |
"3x3 convolution with padding" | |
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, | |
padding=1, bias=False) | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, fist_dilation=1, multi_grid=1): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
self.bn1 = BatchNorm2d(planes) | |
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, | |
padding=dilation * multi_grid, dilation=dilation * multi_grid, bias=False) | |
self.bn2 = BatchNorm2d(planes) | |
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | |
self.bn3 = BatchNorm2d(planes * 4) | |
self.relu = nn.ReLU(inplace=False) | |
self.relu_inplace = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.dilation = dilation | |
self.stride = stride | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out = out + residual | |
out = self.relu_inplace(out) | |
return out | |
class PSPModule(nn.Module): | |
""" | |
Reference: | |
Zhao, Hengshuang, et al. *"Pyramid scene parsing network."* | |
""" | |
def __init__(self, features, out_features=512, sizes=(1, 2, 3, 6)): | |
super(PSPModule, self).__init__() | |
self.stages = [] | |
self.stages = nn.ModuleList([self._make_stage(features, out_features, size) for size in sizes]) | |
self.bottleneck = nn.Sequential( | |
nn.Conv2d(features + len(sizes) * out_features, out_features, kernel_size=3, padding=1, dilation=1, | |
bias=False), | |
BatchNorm2d(out_features), | |
LeakyReLU(), | |
) | |
def _make_stage(self, features, out_features, size): | |
prior = nn.AdaptiveAvgPool2d(output_size=(size, size)) | |
conv = nn.Conv2d(features, out_features, kernel_size=1, bias=False) | |
return nn.Sequential( | |
prior, | |
conv, | |
# bn | |
BatchNorm2d(out_features), | |
LeakyReLU(), | |
) | |
def forward(self, feats): | |
h, w = feats.size(2), feats.size(3) | |
priors = [F.interpolate(input=stage(feats), size=(h, w), mode='bilinear', align_corners=True) for stage in | |
self.stages] + [feats] | |
bottle = self.bottleneck(torch.cat(priors, 1)) | |
return bottle | |
class ASPPModule(nn.Module): | |
""" | |
Reference: | |
Chen, Liang-Chieh, et al. *"Rethinking Atrous Convolution for Semantic Image Segmentation."* | |
""" | |
def __init__(self, features, inner_features=256, out_features=512, dilations=(12, 24, 36)): | |
super(ASPPModule, self).__init__() | |
self.conv1 = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)), | |
nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1, | |
bias=False), | |
# InPlaceABNSync(inner_features) | |
BatchNorm2d(inner_features), | |
LeakyReLU(), | |
) | |
self.conv2 = nn.Sequential( | |
nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1, bias=False), | |
BatchNorm2d(inner_features), | |
LeakyReLU(), | |
) | |
self.conv3 = nn.Sequential( | |
nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[0], dilation=dilations[0], bias=False), | |
BatchNorm2d(inner_features), | |
LeakyReLU(), | |
) | |
self.conv4 = nn.Sequential( | |
nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[1], dilation=dilations[1], bias=False), | |
BatchNorm2d(inner_features), | |
LeakyReLU(), | |
) | |
self.conv5 = nn.Sequential( | |
nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[2], dilation=dilations[2], bias=False), | |
BatchNorm2d(inner_features), | |
LeakyReLU(), | |
) | |
self.bottleneck = nn.Sequential( | |
nn.Conv2d(inner_features * 5, out_features, kernel_size=1, padding=0, dilation=1, bias=False), | |
BatchNorm2d(inner_features), | |
LeakyReLU(), | |
nn.Dropout2d(0.1) | |
) | |
def forward(self, x): | |
_, _, h, w = x.size() | |
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True) | |
feat2 = self.conv2(x) | |
feat3 = self.conv3(x) | |
feat4 = self.conv4(x) | |
feat5 = self.conv5(x) | |
out = torch.cat((feat1, feat2, feat3, feat4, feat5), 1) | |
bottle = self.bottleneck(out) | |
return bottle | |
class Edge_Module(nn.Module): | |
""" | |
Edge Learning Branch | |
""" | |
def __init__(self, in_fea=[256, 512, 1024], mid_fea=256, out_fea=2): | |
super(Edge_Module, self).__init__() | |
self.conv1 = nn.Sequential( | |
nn.Conv2d(in_fea[0], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False), | |
BatchNorm2d(mid_fea), | |
LeakyReLU(), | |
) | |
self.conv2 = nn.Sequential( | |
nn.Conv2d(in_fea[1], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False), | |
BatchNorm2d(mid_fea), | |
LeakyReLU(), | |
) | |
self.conv3 = nn.Sequential( | |
nn.Conv2d(in_fea[2], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False), | |
BatchNorm2d(mid_fea), | |
LeakyReLU(), | |
) | |
self.conv4 = nn.Conv2d(mid_fea, out_fea, kernel_size=3, padding=1, dilation=1, bias=True) | |
# self.conv5 = nn.Conv2d(out_fea * 3, out_fea, kernel_size=1, padding=0, dilation=1, bias=True) | |
def forward(self, x1, x2, x3): | |
_, _, h, w = x1.size() | |
edge1_fea = self.conv1(x1) | |
# edge1 = self.conv4(edge1_fea) | |
edge2_fea = self.conv2(x2) | |
edge2 = self.conv4(edge2_fea) | |
edge3_fea = self.conv3(x3) | |
edge3 = self.conv4(edge3_fea) | |
edge2_fea = F.interpolate(edge2_fea, size=(h, w), mode='bilinear', align_corners=True) | |
edge3_fea = F.interpolate(edge3_fea, size=(h, w), mode='bilinear', align_corners=True) | |
edge2 = F.interpolate(edge2, size=(h, w), mode='bilinear', align_corners=True) | |
edge3 = F.interpolate(edge3, size=(h, w), mode='bilinear', align_corners=True) | |
# edge = torch.cat([edge1, edge2, edge3], dim=1) | |
edge_fea = torch.cat([edge1_fea, edge2_fea, edge3_fea], dim=1) | |
# edge = self.conv5(edge) | |
# return edge, edge_fea | |
return edge_fea | |
class Decoder_Module(nn.Module): | |
""" | |
Parsing Branch Decoder Module. | |
""" | |
def __init__(self, num_classes): | |
super(Decoder_Module, self).__init__() | |
self.conv1 = nn.Sequential( | |
nn.Conv2d(512, 256, kernel_size=1, padding=0, dilation=1, bias=False), | |
BatchNorm2d(256), | |
LeakyReLU(), | |
) | |
self.conv2 = nn.Sequential( | |
nn.Conv2d(256, 48, kernel_size=1, stride=1, padding=0, dilation=1, bias=False), | |
BatchNorm2d(48), | |
LeakyReLU(), | |
) | |
self.conv3 = nn.Sequential( | |
nn.Conv2d(304, 256, kernel_size=1, padding=0, dilation=1, bias=False), | |
BatchNorm2d(256), | |
LeakyReLU(), | |
nn.Conv2d(256, 256, kernel_size=1, padding=0, dilation=1, bias=False), | |
BatchNorm2d(256), | |
LeakyReLU(), | |
) | |
# self.conv4 = nn.Conv2d(256, num_classes, kernel_size=1, padding=0, dilation=1, bias=True) | |
def forward(self, xt, xl): | |
_, _, h, w = xl.size() | |
xt = F.interpolate(self.conv1(xt), size=(h, w), mode='bilinear', align_corners=True) | |
xl = self.conv2(xl) | |
x = torch.cat([xt, xl], dim=1) | |
x = self.conv3(x) | |
# seg = self.conv4(x) | |
# return seg, x | |
return x | |
class ResNet(nn.Module): | |
def __init__(self, block, layers, num_classes): | |
self.inplanes = 128 | |
super(ResNet, self).__init__() | |
self.conv1 = conv3x3(3, 64, stride=2) | |
self.bn1 = BatchNorm2d(64) | |
self.relu1 = nn.ReLU(inplace=False) | |
self.conv2 = conv3x3(64, 64) | |
self.bn2 = BatchNorm2d(64) | |
self.relu2 = nn.ReLU(inplace=False) | |
self.conv3 = conv3x3(64, 128) | |
self.bn3 = BatchNorm2d(128) | |
self.relu3 = nn.ReLU(inplace=False) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer(block, 64, layers[0]) | |
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) | |
self.layer3 = self._make_layer(block, 256, layers[2], stride=2) | |
self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=2, multi_grid=(1, 1, 1)) | |
self.context_encoding = PSPModule(2048, 512) | |
self.edge = Edge_Module() | |
self.decoder = Decoder_Module(num_classes) | |
self.fushion = nn.Sequential( | |
nn.Conv2d(1024, 256, kernel_size=1, padding=0, dilation=1, bias=False), | |
BatchNorm2d(256), | |
LeakyReLU(), | |
nn.Dropout2d(0.1), | |
nn.Conv2d(256, num_classes, kernel_size=1, padding=0, dilation=1, bias=True) | |
) | |
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, multi_grid=1): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d(self.inplanes, planes * block.expansion, | |
kernel_size=1, stride=stride, bias=False), | |
BatchNorm2d(planes * block.expansion, affine=affine_par)) | |
layers = [] | |
generate_multi_grid = lambda index, grids: grids[index % len(grids)] if isinstance(grids, tuple) else 1 | |
layers.append(block(self.inplanes, planes, stride, dilation=dilation, downsample=downsample, | |
multi_grid=generate_multi_grid(0, multi_grid))) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append( | |
block(self.inplanes, planes, dilation=dilation, multi_grid=generate_multi_grid(i, multi_grid))) | |
return nn.Sequential(*layers) | |
def forward(self, x): | |
x = self.relu1(self.bn1(self.conv1(x))) | |
x = self.relu2(self.bn2(self.conv2(x))) | |
x = self.relu3(self.bn3(self.conv3(x))) | |
x = self.maxpool(x) | |
x2 = self.layer1(x) | |
x3 = self.layer2(x2) | |
x4 = self.layer3(x3) | |
x5 = self.layer4(x4) | |
x = self.context_encoding(x5) | |
# parsing_result, parsing_fea = self.decoder(x, x2) | |
parsing_fea = self.decoder(x, x2) | |
# Edge Branch | |
# edge_result, edge_fea = self.edge(x2, x3, x4) | |
edge_fea = self.edge(x2, x3, x4) | |
# Fusion Branch | |
x = torch.cat([parsing_fea, edge_fea], dim=1) | |
fusion_result = self.fushion(x) | |
# return [[parsing_result, fusion_result], [edge_result]] | |
return fusion_result | |
def initialize_pretrained_model(model, settings, pretrained='./models/resnet101-imagenet.pth'): | |
model.input_space = settings['input_space'] | |
model.input_size = settings['input_size'] | |
model.input_range = settings['input_range'] | |
model.mean = settings['mean'] | |
model.std = settings['std'] | |
if pretrained is not None: | |
saved_state_dict = torch.load(pretrained) | |
new_params = model.state_dict().copy() | |
for i in saved_state_dict: | |
i_parts = i.split('.') | |
if not i_parts[0] == 'fc': | |
new_params['.'.join(i_parts[0:])] = saved_state_dict[i] | |
model.load_state_dict(new_params) | |
def resnet101(num_classes=20, pretrained='./models/resnet101-imagenet.pth'): | |
model = ResNet(Bottleneck, [3, 4, 23, 3], num_classes) | |
settings = pretrained_settings['resnet101']['imagenet'] | |
initialize_pretrained_model(model, settings, pretrained) | |
return model | |