Spaces:
Running
on
Zero
Running
on
Zero
zhengchong
commited on
Commit
•
6eb1d7d
1
Parent(s):
eb5d403
chore: Update dependencies and code structure
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +0 -13
- __pycache__/utils.cpython-39.pyc +0 -0
- app.py +7 -19
- densepose/__init__.py +22 -0
- densepose/__pycache__/__init__.cpython-39.pyc +0 -0
- densepose/__pycache__/config.cpython-39.pyc +0 -0
- densepose/config.py +277 -0
- densepose/converters/__init__.py +17 -0
- densepose/converters/__pycache__/__init__.cpython-39.pyc +0 -0
- densepose/converters/__pycache__/base.cpython-39.pyc +0 -0
- densepose/converters/__pycache__/builtin.cpython-39.pyc +0 -0
- densepose/converters/__pycache__/chart_output_hflip.cpython-39.pyc +0 -0
- densepose/converters/__pycache__/chart_output_to_chart_result.cpython-39.pyc +0 -0
- densepose/converters/__pycache__/hflip.cpython-39.pyc +0 -0
- densepose/converters/__pycache__/segm_to_mask.cpython-39.pyc +0 -0
- densepose/converters/__pycache__/to_chart_result.cpython-39.pyc +0 -0
- densepose/converters/__pycache__/to_mask.cpython-39.pyc +0 -0
- densepose/converters/base.py +95 -0
- densepose/converters/builtin.py +33 -0
- densepose/converters/chart_output_hflip.py +73 -0
- densepose/converters/chart_output_to_chart_result.py +190 -0
- densepose/converters/hflip.py +36 -0
- densepose/converters/segm_to_mask.py +152 -0
- densepose/converters/to_chart_result.py +72 -0
- densepose/converters/to_mask.py +51 -0
- densepose/data/__init__.py +27 -0
- densepose/data/__pycache__/__init__.cpython-39.pyc +0 -0
- densepose/data/__pycache__/build.cpython-39.pyc +0 -0
- densepose/data/__pycache__/combined_loader.cpython-39.pyc +0 -0
- densepose/data/__pycache__/dataset_mapper.cpython-39.pyc +0 -0
- densepose/data/__pycache__/image_list_dataset.cpython-39.pyc +0 -0
- densepose/data/__pycache__/inference_based_loader.cpython-39.pyc +0 -0
- densepose/data/__pycache__/utils.cpython-39.pyc +0 -0
- densepose/data/build.py +738 -0
- densepose/data/combined_loader.py +46 -0
- densepose/data/dataset_mapper.py +170 -0
- densepose/data/datasets/__init__.py +7 -0
- densepose/data/datasets/__pycache__/__init__.cpython-39.pyc +0 -0
- densepose/data/datasets/__pycache__/builtin.cpython-39.pyc +0 -0
- densepose/data/datasets/__pycache__/chimpnsee.cpython-39.pyc +0 -0
- densepose/data/datasets/__pycache__/coco.cpython-39.pyc +0 -0
- densepose/data/datasets/__pycache__/dataset_type.cpython-39.pyc +0 -0
- densepose/data/datasets/__pycache__/lvis.cpython-39.pyc +0 -0
- densepose/data/datasets/builtin.py +18 -0
- densepose/data/datasets/chimpnsee.py +31 -0
- densepose/data/datasets/coco.py +434 -0
- densepose/data/datasets/dataset_type.py +13 -0
- densepose/data/datasets/lvis.py +259 -0
- densepose/data/image_list_dataset.py +74 -0
- densepose/data/inference_based_loader.py +174 -0
README.md
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: CatVTON
|
3 |
-
emoji: 👀
|
4 |
-
colorFrom: gray
|
5 |
-
colorTo: blue
|
6 |
-
sdk: gradio
|
7 |
-
sdk_version: 4.40.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: cc-by-nc-sa-4.0
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
__pycache__/utils.cpython-39.pyc
CHANGED
Binary files a/__pycache__/utils.cpython-39.pyc and b/__pycache__/utils.cpython-39.pyc differ
|
|
app.py
CHANGED
@@ -1,10 +1,7 @@
|
|
1 |
import argparse
|
2 |
import os
|
3 |
-
os.environ['CUDA_HOME'] = '/usr/local/cuda'
|
4 |
-
os.environ['PATH'] = os.environ['PATH'] + ':/usr/local/cuda/bin'
|
5 |
-
|
6 |
from datetime import datetime
|
7 |
-
|
8 |
import gradio as gr
|
9 |
import numpy as np
|
10 |
import torch
|
@@ -12,7 +9,7 @@ from diffusers.image_processor import VaeImageProcessor
|
|
12 |
from huggingface_hub import snapshot_download
|
13 |
from PIL import Image
|
14 |
|
15 |
-
from model.cloth_masker import
|
16 |
from model.pipeline import CatVTONPipeline
|
17 |
from utils import init_weight_dtype, resize_and_crop, resize_and_padding
|
18 |
|
@@ -85,12 +82,6 @@ def parse_args():
|
|
85 |
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
86 |
),
|
87 |
)
|
88 |
-
# parser.add_argument(
|
89 |
-
# "--enable_condition_noise",
|
90 |
-
# action="store_true",
|
91 |
-
# default=True,
|
92 |
-
# help="Whether or not to enable condition noise.",
|
93 |
-
# )
|
94 |
|
95 |
args = parser.parse_args()
|
96 |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
@@ -123,13 +114,13 @@ pipeline = CatVTONPipeline(
|
|
123 |
)
|
124 |
# AutoMasker
|
125 |
mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
|
126 |
-
automasker =
|
127 |
densepose_ckpt=os.path.join(repo_path, "DensePose"),
|
128 |
-
|
129 |
device='cuda',
|
130 |
)
|
131 |
|
132 |
-
|
133 |
def submit_function(
|
134 |
person_image,
|
135 |
cloth_image,
|
@@ -238,12 +229,9 @@ HEADER = """
|
|
238 |
</a>
|
239 |
</div>
|
240 |
<br>
|
241 |
-
|
242 |
-
· Thanks to <a href="https://huggingface.co/zero-gpu-explorers">ZeroGPU</a> for providing A100 for this demo. <br>
|
243 |
-
· To adapt to ZeroGPU, we replace SCHP with <a href="https://huggingface.co/mattmdjaga/segformer_b2_clothes">SegFormer</a> which may result in differences from <a href="http://120.76.142.206:8888">our own demo</a>. <br>
|
244 |
· This demo and our weights are only open for **Non-commercial Use**. <br>
|
245 |
-
· SafetyChecker is set to filter NSFW content, but it may block normal results too. Please adjust the <span>`seed`</span> for normal outcomes
|
246 |
-
|
247 |
"""
|
248 |
|
249 |
def app_gradio():
|
|
|
1 |
import argparse
|
2 |
import os
|
|
|
|
|
|
|
3 |
from datetime import datetime
|
4 |
+
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import torch
|
|
|
9 |
from huggingface_hub import snapshot_download
|
10 |
from PIL import Image
|
11 |
|
12 |
+
from model.cloth_masker import AutoMasker, vis_mask
|
13 |
from model.pipeline import CatVTONPipeline
|
14 |
from utils import init_weight_dtype, resize_and_crop, resize_and_padding
|
15 |
|
|
|
82 |
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
83 |
),
|
84 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
args = parser.parse_args()
|
87 |
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
|
|
114 |
)
|
115 |
# AutoMasker
|
116 |
mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
|
117 |
+
automasker = AutoMasker(
|
118 |
densepose_ckpt=os.path.join(repo_path, "DensePose"),
|
119 |
+
schp_ckpt=os.path.join(repo_path, "SCHP"),
|
120 |
device='cuda',
|
121 |
)
|
122 |
|
123 |
+
|
124 |
def submit_function(
|
125 |
person_image,
|
126 |
cloth_image,
|
|
|
229 |
</a>
|
230 |
</div>
|
231 |
<br>
|
|
|
|
|
|
|
232 |
· This demo and our weights are only open for **Non-commercial Use**. <br>
|
233 |
+
· SafetyChecker is set to filter NSFW content, but it may block normal results too. Please adjust the <span>`seed`</span> for normal outcomes.<br>
|
234 |
+
· Thanks to <a href="https://huggingface.co/zero-gpu-explorers">ZeroGPU</a> for providing GPU for <a href="https://huggingface.co/spaces/zhengchong/CatVTON">Our HuggingFace Space.</a>
|
235 |
"""
|
236 |
|
237 |
def app_gradio():
|
densepose/__init__.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# pyre-unsafe
|
4 |
+
from .data.datasets import builtin # just to register data
|
5 |
+
from .converters import builtin as builtin_converters # register converters
|
6 |
+
from .config import (
|
7 |
+
add_densepose_config,
|
8 |
+
add_densepose_head_config,
|
9 |
+
add_hrnet_config,
|
10 |
+
add_dataset_category_config,
|
11 |
+
add_bootstrap_config,
|
12 |
+
load_bootstrap_config,
|
13 |
+
)
|
14 |
+
from .structures import DensePoseDataRelative, DensePoseList, DensePoseTransformData
|
15 |
+
from .evaluation import DensePoseCOCOEvaluator
|
16 |
+
from .modeling.roi_heads import DensePoseROIHeads
|
17 |
+
from .modeling.test_time_augmentation import (
|
18 |
+
DensePoseGeneralizedRCNNWithTTA,
|
19 |
+
DensePoseDatasetMapperTTA,
|
20 |
+
)
|
21 |
+
from .utils.transform import load_from_cfg
|
22 |
+
from .modeling.hrfpn import build_hrfpn_backbone
|
densepose/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (925 Bytes). View file
|
|
densepose/__pycache__/config.cpython-39.pyc
ADDED
Binary file (5.82 kB). View file
|
|
densepose/config.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding = utf-8 -*-
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
# pyre-ignore-all-errors
|
4 |
+
|
5 |
+
from detectron2.config import CfgNode as CN
|
6 |
+
|
7 |
+
|
8 |
+
def add_dataset_category_config(cfg: CN) -> None:
|
9 |
+
"""
|
10 |
+
Add config for additional category-related dataset options
|
11 |
+
- category whitelisting
|
12 |
+
- category mapping
|
13 |
+
"""
|
14 |
+
_C = cfg
|
15 |
+
_C.DATASETS.CATEGORY_MAPS = CN(new_allowed=True)
|
16 |
+
_C.DATASETS.WHITELISTED_CATEGORIES = CN(new_allowed=True)
|
17 |
+
# class to mesh mapping
|
18 |
+
_C.DATASETS.CLASS_TO_MESH_NAME_MAPPING = CN(new_allowed=True)
|
19 |
+
|
20 |
+
|
21 |
+
def add_evaluation_config(cfg: CN) -> None:
|
22 |
+
_C = cfg
|
23 |
+
_C.DENSEPOSE_EVALUATION = CN()
|
24 |
+
# evaluator type, possible values:
|
25 |
+
# - "iou": evaluator for models that produce iou data
|
26 |
+
# - "cse": evaluator for models that produce cse data
|
27 |
+
_C.DENSEPOSE_EVALUATION.TYPE = "iou"
|
28 |
+
# storage for DensePose results, possible values:
|
29 |
+
# - "none": no explicit storage, all the results are stored in the
|
30 |
+
# dictionary with predictions, memory intensive;
|
31 |
+
# historically the default storage type
|
32 |
+
# - "ram": RAM storage, uses per-process RAM storage, which is
|
33 |
+
# reduced to a single process storage on later stages,
|
34 |
+
# less memory intensive
|
35 |
+
# - "file": file storage, uses per-process file-based storage,
|
36 |
+
# the least memory intensive, but may create bottlenecks
|
37 |
+
# on file system accesses
|
38 |
+
_C.DENSEPOSE_EVALUATION.STORAGE = "none"
|
39 |
+
# minimum threshold for IOU values: the lower its values is,
|
40 |
+
# the more matches are produced (and the higher the AP score)
|
41 |
+
_C.DENSEPOSE_EVALUATION.MIN_IOU_THRESHOLD = 0.5
|
42 |
+
# Non-distributed inference is slower (at inference time) but can avoid RAM OOM
|
43 |
+
_C.DENSEPOSE_EVALUATION.DISTRIBUTED_INFERENCE = True
|
44 |
+
# evaluate mesh alignment based on vertex embeddings, only makes sense in CSE context
|
45 |
+
_C.DENSEPOSE_EVALUATION.EVALUATE_MESH_ALIGNMENT = False
|
46 |
+
# meshes to compute mesh alignment for
|
47 |
+
_C.DENSEPOSE_EVALUATION.MESH_ALIGNMENT_MESH_NAMES = []
|
48 |
+
|
49 |
+
|
50 |
+
def add_bootstrap_config(cfg: CN) -> None:
|
51 |
+
""" """
|
52 |
+
_C = cfg
|
53 |
+
_C.BOOTSTRAP_DATASETS = []
|
54 |
+
_C.BOOTSTRAP_MODEL = CN()
|
55 |
+
_C.BOOTSTRAP_MODEL.WEIGHTS = ""
|
56 |
+
_C.BOOTSTRAP_MODEL.DEVICE = "cuda"
|
57 |
+
|
58 |
+
|
59 |
+
def get_bootstrap_dataset_config() -> CN:
|
60 |
+
_C = CN()
|
61 |
+
_C.DATASET = ""
|
62 |
+
# ratio used to mix data loaders
|
63 |
+
_C.RATIO = 0.1
|
64 |
+
# image loader
|
65 |
+
_C.IMAGE_LOADER = CN(new_allowed=True)
|
66 |
+
_C.IMAGE_LOADER.TYPE = ""
|
67 |
+
_C.IMAGE_LOADER.BATCH_SIZE = 4
|
68 |
+
_C.IMAGE_LOADER.NUM_WORKERS = 4
|
69 |
+
_C.IMAGE_LOADER.CATEGORIES = []
|
70 |
+
_C.IMAGE_LOADER.MAX_COUNT_PER_CATEGORY = 1_000_000
|
71 |
+
_C.IMAGE_LOADER.CATEGORY_TO_CLASS_MAPPING = CN(new_allowed=True)
|
72 |
+
# inference
|
73 |
+
_C.INFERENCE = CN()
|
74 |
+
# batch size for model inputs
|
75 |
+
_C.INFERENCE.INPUT_BATCH_SIZE = 4
|
76 |
+
# batch size to group model outputs
|
77 |
+
_C.INFERENCE.OUTPUT_BATCH_SIZE = 2
|
78 |
+
# sampled data
|
79 |
+
_C.DATA_SAMPLER = CN(new_allowed=True)
|
80 |
+
_C.DATA_SAMPLER.TYPE = ""
|
81 |
+
_C.DATA_SAMPLER.USE_GROUND_TRUTH_CATEGORIES = False
|
82 |
+
# filter
|
83 |
+
_C.FILTER = CN(new_allowed=True)
|
84 |
+
_C.FILTER.TYPE = ""
|
85 |
+
return _C
|
86 |
+
|
87 |
+
|
88 |
+
def load_bootstrap_config(cfg: CN) -> None:
|
89 |
+
"""
|
90 |
+
Bootstrap datasets are given as a list of `dict` that are not automatically
|
91 |
+
converted into CfgNode. This method processes all bootstrap dataset entries
|
92 |
+
and ensures that they are in CfgNode format and comply with the specification
|
93 |
+
"""
|
94 |
+
if not cfg.BOOTSTRAP_DATASETS:
|
95 |
+
return
|
96 |
+
|
97 |
+
bootstrap_datasets_cfgnodes = []
|
98 |
+
for dataset_cfg in cfg.BOOTSTRAP_DATASETS:
|
99 |
+
_C = get_bootstrap_dataset_config().clone()
|
100 |
+
_C.merge_from_other_cfg(CN(dataset_cfg))
|
101 |
+
bootstrap_datasets_cfgnodes.append(_C)
|
102 |
+
cfg.BOOTSTRAP_DATASETS = bootstrap_datasets_cfgnodes
|
103 |
+
|
104 |
+
|
105 |
+
def add_densepose_head_cse_config(cfg: CN) -> None:
|
106 |
+
"""
|
107 |
+
Add configuration options for Continuous Surface Embeddings (CSE)
|
108 |
+
"""
|
109 |
+
_C = cfg
|
110 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE = CN()
|
111 |
+
# Dimensionality D of the embedding space
|
112 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBED_SIZE = 16
|
113 |
+
# Embedder specifications for various mesh IDs
|
114 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBEDDERS = CN(new_allowed=True)
|
115 |
+
# normalization coefficient for embedding distances
|
116 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBEDDING_DIST_GAUSS_SIGMA = 0.01
|
117 |
+
# normalization coefficient for geodesic distances
|
118 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.GEODESIC_DIST_GAUSS_SIGMA = 0.01
|
119 |
+
# embedding loss weight
|
120 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBED_LOSS_WEIGHT = 0.6
|
121 |
+
# embedding loss name, currently the following options are supported:
|
122 |
+
# - EmbeddingLoss: cross-entropy on vertex labels
|
123 |
+
# - SoftEmbeddingLoss: cross-entropy on vertex label combined with
|
124 |
+
# Gaussian penalty on distance between vertices
|
125 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBED_LOSS_NAME = "EmbeddingLoss"
|
126 |
+
# optimizer hyperparameters
|
127 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.FEATURES_LR_FACTOR = 1.0
|
128 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.EMBEDDING_LR_FACTOR = 1.0
|
129 |
+
# Shape to shape cycle consistency loss parameters:
|
130 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.SHAPE_TO_SHAPE_CYCLE_LOSS = CN({"ENABLED": False})
|
131 |
+
# shape to shape cycle consistency loss weight
|
132 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.SHAPE_TO_SHAPE_CYCLE_LOSS.WEIGHT = 0.025
|
133 |
+
# norm type used for loss computation
|
134 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.SHAPE_TO_SHAPE_CYCLE_LOSS.NORM_P = 2
|
135 |
+
# normalization term for embedding similarity matrices
|
136 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.SHAPE_TO_SHAPE_CYCLE_LOSS.TEMPERATURE = 0.05
|
137 |
+
# maximum number of vertices to include into shape to shape cycle loss
|
138 |
+
# if negative or zero, all vertices are considered
|
139 |
+
# if positive, random subset of vertices of given size is considered
|
140 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.SHAPE_TO_SHAPE_CYCLE_LOSS.MAX_NUM_VERTICES = 4936
|
141 |
+
# Pixel to shape cycle consistency loss parameters:
|
142 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS = CN({"ENABLED": False})
|
143 |
+
# pixel to shape cycle consistency loss weight
|
144 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.WEIGHT = 0.0001
|
145 |
+
# norm type used for loss computation
|
146 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.NORM_P = 2
|
147 |
+
# map images to all meshes and back (if false, use only gt meshes from the batch)
|
148 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.USE_ALL_MESHES_NOT_GT_ONLY = False
|
149 |
+
# Randomly select at most this number of pixels from every instance
|
150 |
+
# if negative or zero, all vertices are considered
|
151 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.NUM_PIXELS_TO_SAMPLE = 100
|
152 |
+
# normalization factor for pixel to pixel distances (higher value = smoother distribution)
|
153 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.PIXEL_SIGMA = 5.0
|
154 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.TEMPERATURE_PIXEL_TO_VERTEX = 0.05
|
155 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CSE.PIX_TO_SHAPE_CYCLE_LOSS.TEMPERATURE_VERTEX_TO_PIXEL = 0.05
|
156 |
+
|
157 |
+
|
158 |
+
def add_densepose_head_config(cfg: CN) -> None:
|
159 |
+
"""
|
160 |
+
Add config for densepose head.
|
161 |
+
"""
|
162 |
+
_C = cfg
|
163 |
+
|
164 |
+
_C.MODEL.DENSEPOSE_ON = True
|
165 |
+
|
166 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD = CN()
|
167 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.NAME = ""
|
168 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.NUM_STACKED_CONVS = 8
|
169 |
+
# Number of parts used for point labels
|
170 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.NUM_PATCHES = 24
|
171 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.DECONV_KERNEL = 4
|
172 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CONV_HEAD_DIM = 512
|
173 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.CONV_HEAD_KERNEL = 3
|
174 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.UP_SCALE = 2
|
175 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.HEATMAP_SIZE = 112
|
176 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.POOLER_TYPE = "ROIAlignV2"
|
177 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.POOLER_RESOLUTION = 28
|
178 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.POOLER_SAMPLING_RATIO = 2
|
179 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.NUM_COARSE_SEGM_CHANNELS = 2 # 15 or 2
|
180 |
+
# Overlap threshold for an RoI to be considered foreground (if >= FG_IOU_THRESHOLD)
|
181 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.FG_IOU_THRESHOLD = 0.7
|
182 |
+
# Loss weights for annotation masks.(14 Parts)
|
183 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.INDEX_WEIGHTS = 5.0
|
184 |
+
# Loss weights for surface parts. (24 Parts)
|
185 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.PART_WEIGHTS = 1.0
|
186 |
+
# Loss weights for UV regression.
|
187 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.POINT_REGRESSION_WEIGHTS = 0.01
|
188 |
+
# Coarse segmentation is trained using instance segmentation task data
|
189 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.COARSE_SEGM_TRAINED_BY_MASKS = False
|
190 |
+
# For Decoder
|
191 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.DECODER_ON = True
|
192 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.DECODER_NUM_CLASSES = 256
|
193 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.DECODER_CONV_DIMS = 256
|
194 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.DECODER_NORM = ""
|
195 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.DECODER_COMMON_STRIDE = 4
|
196 |
+
# For DeepLab head
|
197 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.DEEPLAB = CN()
|
198 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.DEEPLAB.NORM = "GN"
|
199 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.DEEPLAB.NONLOCAL_ON = 0
|
200 |
+
# Predictor class name, must be registered in DENSEPOSE_PREDICTOR_REGISTRY
|
201 |
+
# Some registered predictors:
|
202 |
+
# "DensePoseChartPredictor": predicts segmentation and UV coordinates for predefined charts
|
203 |
+
# "DensePoseChartWithConfidencePredictor": predicts segmentation, UV coordinates
|
204 |
+
# and associated confidences for predefined charts (default)
|
205 |
+
# "DensePoseEmbeddingWithConfidencePredictor": predicts segmentation, embeddings
|
206 |
+
# and associated confidences for CSE
|
207 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.PREDICTOR_NAME = "DensePoseChartWithConfidencePredictor"
|
208 |
+
# Loss class name, must be registered in DENSEPOSE_LOSS_REGISTRY
|
209 |
+
# Some registered losses:
|
210 |
+
# "DensePoseChartLoss": loss for chart-based models that estimate
|
211 |
+
# segmentation and UV coordinates
|
212 |
+
# "DensePoseChartWithConfidenceLoss": loss for chart-based models that estimate
|
213 |
+
# segmentation, UV coordinates and the corresponding confidences (default)
|
214 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.LOSS_NAME = "DensePoseChartWithConfidenceLoss"
|
215 |
+
# Confidences
|
216 |
+
# Enable learning UV confidences (variances) along with the actual values
|
217 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.UV_CONFIDENCE = CN({"ENABLED": False})
|
218 |
+
# UV confidence lower bound
|
219 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.UV_CONFIDENCE.EPSILON = 0.01
|
220 |
+
# Enable learning segmentation confidences (variances) along with the actual values
|
221 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.SEGM_CONFIDENCE = CN({"ENABLED": False})
|
222 |
+
# Segmentation confidence lower bound
|
223 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.SEGM_CONFIDENCE.EPSILON = 0.01
|
224 |
+
# Statistical model type for confidence learning, possible values:
|
225 |
+
# - "iid_iso": statistically independent identically distributed residuals
|
226 |
+
# with isotropic covariance
|
227 |
+
# - "indep_aniso": statistically independent residuals with anisotropic
|
228 |
+
# covariances
|
229 |
+
_C.MODEL.ROI_DENSEPOSE_HEAD.UV_CONFIDENCE.TYPE = "iid_iso"
|
230 |
+
# List of angles for rotation in data augmentation during training
|
231 |
+
_C.INPUT.ROTATION_ANGLES = [0]
|
232 |
+
_C.TEST.AUG.ROTATION_ANGLES = () # Rotation TTA
|
233 |
+
|
234 |
+
add_densepose_head_cse_config(cfg)
|
235 |
+
|
236 |
+
|
237 |
+
def add_hrnet_config(cfg: CN) -> None:
|
238 |
+
"""
|
239 |
+
Add config for HRNet backbone.
|
240 |
+
"""
|
241 |
+
_C = cfg
|
242 |
+
|
243 |
+
# For HigherHRNet w32
|
244 |
+
_C.MODEL.HRNET = CN()
|
245 |
+
_C.MODEL.HRNET.STEM_INPLANES = 64
|
246 |
+
_C.MODEL.HRNET.STAGE2 = CN()
|
247 |
+
_C.MODEL.HRNET.STAGE2.NUM_MODULES = 1
|
248 |
+
_C.MODEL.HRNET.STAGE2.NUM_BRANCHES = 2
|
249 |
+
_C.MODEL.HRNET.STAGE2.BLOCK = "BASIC"
|
250 |
+
_C.MODEL.HRNET.STAGE2.NUM_BLOCKS = [4, 4]
|
251 |
+
_C.MODEL.HRNET.STAGE2.NUM_CHANNELS = [32, 64]
|
252 |
+
_C.MODEL.HRNET.STAGE2.FUSE_METHOD = "SUM"
|
253 |
+
_C.MODEL.HRNET.STAGE3 = CN()
|
254 |
+
_C.MODEL.HRNET.STAGE3.NUM_MODULES = 4
|
255 |
+
_C.MODEL.HRNET.STAGE3.NUM_BRANCHES = 3
|
256 |
+
_C.MODEL.HRNET.STAGE3.BLOCK = "BASIC"
|
257 |
+
_C.MODEL.HRNET.STAGE3.NUM_BLOCKS = [4, 4, 4]
|
258 |
+
_C.MODEL.HRNET.STAGE3.NUM_CHANNELS = [32, 64, 128]
|
259 |
+
_C.MODEL.HRNET.STAGE3.FUSE_METHOD = "SUM"
|
260 |
+
_C.MODEL.HRNET.STAGE4 = CN()
|
261 |
+
_C.MODEL.HRNET.STAGE4.NUM_MODULES = 3
|
262 |
+
_C.MODEL.HRNET.STAGE4.NUM_BRANCHES = 4
|
263 |
+
_C.MODEL.HRNET.STAGE4.BLOCK = "BASIC"
|
264 |
+
_C.MODEL.HRNET.STAGE4.NUM_BLOCKS = [4, 4, 4, 4]
|
265 |
+
_C.MODEL.HRNET.STAGE4.NUM_CHANNELS = [32, 64, 128, 256]
|
266 |
+
_C.MODEL.HRNET.STAGE4.FUSE_METHOD = "SUM"
|
267 |
+
|
268 |
+
_C.MODEL.HRNET.HRFPN = CN()
|
269 |
+
_C.MODEL.HRNET.HRFPN.OUT_CHANNELS = 256
|
270 |
+
|
271 |
+
|
272 |
+
def add_densepose_config(cfg: CN) -> None:
|
273 |
+
add_densepose_head_config(cfg)
|
274 |
+
add_hrnet_config(cfg)
|
275 |
+
add_bootstrap_config(cfg)
|
276 |
+
add_dataset_category_config(cfg)
|
277 |
+
add_evaluation_config(cfg)
|
densepose/converters/__init__.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# pyre-unsafe
|
4 |
+
|
5 |
+
from .hflip import HFlipConverter
|
6 |
+
from .to_mask import ToMaskConverter
|
7 |
+
from .to_chart_result import ToChartResultConverter, ToChartResultConverterWithConfidences
|
8 |
+
from .segm_to_mask import (
|
9 |
+
predictor_output_with_fine_and_coarse_segm_to_mask,
|
10 |
+
predictor_output_with_coarse_segm_to_mask,
|
11 |
+
resample_fine_and_coarse_segm_to_bbox,
|
12 |
+
)
|
13 |
+
from .chart_output_to_chart_result import (
|
14 |
+
densepose_chart_predictor_output_to_result,
|
15 |
+
densepose_chart_predictor_output_to_result_with_confidences,
|
16 |
+
)
|
17 |
+
from .chart_output_hflip import densepose_chart_predictor_output_hflip
|
densepose/converters/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (799 Bytes). View file
|
|
densepose/converters/__pycache__/base.cpython-39.pyc
ADDED
Binary file (3.68 kB). View file
|
|
densepose/converters/__pycache__/builtin.cpython-39.pyc
ADDED
Binary file (804 Bytes). View file
|
|
densepose/converters/__pycache__/chart_output_hflip.cpython-39.pyc
ADDED
Binary file (1.95 kB). View file
|
|
densepose/converters/__pycache__/chart_output_to_chart_result.cpython-39.pyc
ADDED
Binary file (6.03 kB). View file
|
|
densepose/converters/__pycache__/hflip.cpython-39.pyc
ADDED
Binary file (1.35 kB). View file
|
|
densepose/converters/__pycache__/segm_to_mask.cpython-39.pyc
ADDED
Binary file (5.75 kB). View file
|
|
densepose/converters/__pycache__/to_chart_result.cpython-39.pyc
ADDED
Binary file (2.74 kB). View file
|
|
densepose/converters/__pycache__/to_mask.cpython-39.pyc
ADDED
Binary file (1.76 kB). View file
|
|
densepose/converters/base.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# pyre-unsafe
|
4 |
+
|
5 |
+
from typing import Any, Tuple, Type
|
6 |
+
import torch
|
7 |
+
|
8 |
+
|
9 |
+
class BaseConverter:
|
10 |
+
"""
|
11 |
+
Converter base class to be reused by various converters.
|
12 |
+
Converter allows one to convert data from various source types to a particular
|
13 |
+
destination type. Each source type needs to register its converter. The
|
14 |
+
registration for each source type is valid for all descendants of that type.
|
15 |
+
"""
|
16 |
+
|
17 |
+
@classmethod
|
18 |
+
def register(cls, from_type: Type, converter: Any = None):
|
19 |
+
"""
|
20 |
+
Registers a converter for the specified type.
|
21 |
+
Can be used as a decorator (if converter is None), or called as a method.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
from_type (type): type to register the converter for;
|
25 |
+
all instances of this type will use the same converter
|
26 |
+
converter (callable): converter to be registered for the given
|
27 |
+
type; if None, this method is assumed to be a decorator for the converter
|
28 |
+
"""
|
29 |
+
|
30 |
+
if converter is not None:
|
31 |
+
cls._do_register(from_type, converter)
|
32 |
+
|
33 |
+
def wrapper(converter: Any) -> Any:
|
34 |
+
cls._do_register(from_type, converter)
|
35 |
+
return converter
|
36 |
+
|
37 |
+
return wrapper
|
38 |
+
|
39 |
+
@classmethod
|
40 |
+
def _do_register(cls, from_type: Type, converter: Any):
|
41 |
+
cls.registry[from_type] = converter # pyre-ignore[16]
|
42 |
+
|
43 |
+
@classmethod
|
44 |
+
def _lookup_converter(cls, from_type: Type) -> Any:
|
45 |
+
"""
|
46 |
+
Perform recursive lookup for the given type
|
47 |
+
to find registered converter. If a converter was found for some base
|
48 |
+
class, it gets registered for this class to save on further lookups.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
from_type: type for which to find a converter
|
52 |
+
Return:
|
53 |
+
callable or None - registered converter or None
|
54 |
+
if no suitable entry was found in the registry
|
55 |
+
"""
|
56 |
+
if from_type in cls.registry: # pyre-ignore[16]
|
57 |
+
return cls.registry[from_type]
|
58 |
+
for base in from_type.__bases__:
|
59 |
+
converter = cls._lookup_converter(base)
|
60 |
+
if converter is not None:
|
61 |
+
cls._do_register(from_type, converter)
|
62 |
+
return converter
|
63 |
+
return None
|
64 |
+
|
65 |
+
@classmethod
|
66 |
+
def convert(cls, instance: Any, *args, **kwargs):
|
67 |
+
"""
|
68 |
+
Convert an instance to the destination type using some registered
|
69 |
+
converter. Does recursive lookup for base classes, so there's no need
|
70 |
+
for explicit registration for derived classes.
|
71 |
+
|
72 |
+
Args:
|
73 |
+
instance: source instance to convert to the destination type
|
74 |
+
Return:
|
75 |
+
An instance of the destination type obtained from the source instance
|
76 |
+
Raises KeyError, if no suitable converter found
|
77 |
+
"""
|
78 |
+
instance_type = type(instance)
|
79 |
+
converter = cls._lookup_converter(instance_type)
|
80 |
+
if converter is None:
|
81 |
+
if cls.dst_type is None: # pyre-ignore[16]
|
82 |
+
output_type_str = "itself"
|
83 |
+
else:
|
84 |
+
output_type_str = cls.dst_type
|
85 |
+
raise KeyError(f"Could not find converter from {instance_type} to {output_type_str}")
|
86 |
+
return converter(instance, *args, **kwargs)
|
87 |
+
|
88 |
+
|
89 |
+
IntTupleBox = Tuple[int, int, int, int]
|
90 |
+
|
91 |
+
|
92 |
+
def make_int_box(box: torch.Tensor) -> IntTupleBox:
|
93 |
+
int_box = [0, 0, 0, 0]
|
94 |
+
int_box[0], int_box[1], int_box[2], int_box[3] = tuple(box.long().tolist())
|
95 |
+
return int_box[0], int_box[1], int_box[2], int_box[3]
|
densepose/converters/builtin.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# pyre-unsafe
|
4 |
+
|
5 |
+
from ..structures import DensePoseChartPredictorOutput, DensePoseEmbeddingPredictorOutput
|
6 |
+
from . import (
|
7 |
+
HFlipConverter,
|
8 |
+
ToChartResultConverter,
|
9 |
+
ToChartResultConverterWithConfidences,
|
10 |
+
ToMaskConverter,
|
11 |
+
densepose_chart_predictor_output_hflip,
|
12 |
+
densepose_chart_predictor_output_to_result,
|
13 |
+
densepose_chart_predictor_output_to_result_with_confidences,
|
14 |
+
predictor_output_with_coarse_segm_to_mask,
|
15 |
+
predictor_output_with_fine_and_coarse_segm_to_mask,
|
16 |
+
)
|
17 |
+
|
18 |
+
ToMaskConverter.register(
|
19 |
+
DensePoseChartPredictorOutput, predictor_output_with_fine_and_coarse_segm_to_mask
|
20 |
+
)
|
21 |
+
ToMaskConverter.register(
|
22 |
+
DensePoseEmbeddingPredictorOutput, predictor_output_with_coarse_segm_to_mask
|
23 |
+
)
|
24 |
+
|
25 |
+
ToChartResultConverter.register(
|
26 |
+
DensePoseChartPredictorOutput, densepose_chart_predictor_output_to_result
|
27 |
+
)
|
28 |
+
|
29 |
+
ToChartResultConverterWithConfidences.register(
|
30 |
+
DensePoseChartPredictorOutput, densepose_chart_predictor_output_to_result_with_confidences
|
31 |
+
)
|
32 |
+
|
33 |
+
HFlipConverter.register(DensePoseChartPredictorOutput, densepose_chart_predictor_output_hflip)
|
densepose/converters/chart_output_hflip.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# pyre-unsafe
|
4 |
+
from dataclasses import fields
|
5 |
+
import torch
|
6 |
+
|
7 |
+
from densepose.structures import DensePoseChartPredictorOutput, DensePoseTransformData
|
8 |
+
|
9 |
+
|
10 |
+
def densepose_chart_predictor_output_hflip(
|
11 |
+
densepose_predictor_output: DensePoseChartPredictorOutput,
|
12 |
+
transform_data: DensePoseTransformData,
|
13 |
+
) -> DensePoseChartPredictorOutput:
|
14 |
+
"""
|
15 |
+
Change to take into account a Horizontal flip.
|
16 |
+
"""
|
17 |
+
if len(densepose_predictor_output) > 0:
|
18 |
+
|
19 |
+
PredictorOutput = type(densepose_predictor_output)
|
20 |
+
output_dict = {}
|
21 |
+
|
22 |
+
for field in fields(densepose_predictor_output):
|
23 |
+
field_value = getattr(densepose_predictor_output, field.name)
|
24 |
+
# flip tensors
|
25 |
+
if isinstance(field_value, torch.Tensor):
|
26 |
+
setattr(densepose_predictor_output, field.name, torch.flip(field_value, [3]))
|
27 |
+
|
28 |
+
densepose_predictor_output = _flip_iuv_semantics_tensor(
|
29 |
+
densepose_predictor_output, transform_data
|
30 |
+
)
|
31 |
+
densepose_predictor_output = _flip_segm_semantics_tensor(
|
32 |
+
densepose_predictor_output, transform_data
|
33 |
+
)
|
34 |
+
|
35 |
+
for field in fields(densepose_predictor_output):
|
36 |
+
output_dict[field.name] = getattr(densepose_predictor_output, field.name)
|
37 |
+
|
38 |
+
return PredictorOutput(**output_dict)
|
39 |
+
else:
|
40 |
+
return densepose_predictor_output
|
41 |
+
|
42 |
+
|
43 |
+
def _flip_iuv_semantics_tensor(
|
44 |
+
densepose_predictor_output: DensePoseChartPredictorOutput,
|
45 |
+
dp_transform_data: DensePoseTransformData,
|
46 |
+
) -> DensePoseChartPredictorOutput:
|
47 |
+
point_label_symmetries = dp_transform_data.point_label_symmetries
|
48 |
+
uv_symmetries = dp_transform_data.uv_symmetries
|
49 |
+
|
50 |
+
N, C, H, W = densepose_predictor_output.u.shape
|
51 |
+
u_loc = (densepose_predictor_output.u[:, 1:, :, :].clamp(0, 1) * 255).long()
|
52 |
+
v_loc = (densepose_predictor_output.v[:, 1:, :, :].clamp(0, 1) * 255).long()
|
53 |
+
Iindex = torch.arange(C - 1, device=densepose_predictor_output.u.device)[
|
54 |
+
None, :, None, None
|
55 |
+
].expand(N, C - 1, H, W)
|
56 |
+
densepose_predictor_output.u[:, 1:, :, :] = uv_symmetries["U_transforms"][Iindex, v_loc, u_loc]
|
57 |
+
densepose_predictor_output.v[:, 1:, :, :] = uv_symmetries["V_transforms"][Iindex, v_loc, u_loc]
|
58 |
+
|
59 |
+
for el in ["fine_segm", "u", "v"]:
|
60 |
+
densepose_predictor_output.__dict__[el] = densepose_predictor_output.__dict__[el][
|
61 |
+
:, point_label_symmetries, :, :
|
62 |
+
]
|
63 |
+
return densepose_predictor_output
|
64 |
+
|
65 |
+
|
66 |
+
def _flip_segm_semantics_tensor(
|
67 |
+
densepose_predictor_output: DensePoseChartPredictorOutput, dp_transform_data
|
68 |
+
):
|
69 |
+
if densepose_predictor_output.coarse_segm.shape[1] > 2:
|
70 |
+
densepose_predictor_output.coarse_segm = densepose_predictor_output.coarse_segm[
|
71 |
+
:, dp_transform_data.mask_label_symmetries, :, :
|
72 |
+
]
|
73 |
+
return densepose_predictor_output
|
densepose/converters/chart_output_to_chart_result.py
ADDED
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# pyre-unsafe
|
4 |
+
|
5 |
+
from typing import Dict
|
6 |
+
import torch
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
from detectron2.structures.boxes import Boxes, BoxMode
|
10 |
+
|
11 |
+
from ..structures import (
|
12 |
+
DensePoseChartPredictorOutput,
|
13 |
+
DensePoseChartResult,
|
14 |
+
DensePoseChartResultWithConfidences,
|
15 |
+
)
|
16 |
+
from . import resample_fine_and_coarse_segm_to_bbox
|
17 |
+
from .base import IntTupleBox, make_int_box
|
18 |
+
|
19 |
+
|
20 |
+
def resample_uv_tensors_to_bbox(
|
21 |
+
u: torch.Tensor,
|
22 |
+
v: torch.Tensor,
|
23 |
+
labels: torch.Tensor,
|
24 |
+
box_xywh_abs: IntTupleBox,
|
25 |
+
) -> torch.Tensor:
|
26 |
+
"""
|
27 |
+
Resamples U and V coordinate estimates for the given bounding box
|
28 |
+
|
29 |
+
Args:
|
30 |
+
u (tensor [1, C, H, W] of float): U coordinates
|
31 |
+
v (tensor [1, C, H, W] of float): V coordinates
|
32 |
+
labels (tensor [H, W] of long): labels obtained by resampling segmentation
|
33 |
+
outputs for the given bounding box
|
34 |
+
box_xywh_abs (tuple of 4 int): bounding box that corresponds to predictor outputs
|
35 |
+
Return:
|
36 |
+
Resampled U and V coordinates - a tensor [2, H, W] of float
|
37 |
+
"""
|
38 |
+
x, y, w, h = box_xywh_abs
|
39 |
+
w = max(int(w), 1)
|
40 |
+
h = max(int(h), 1)
|
41 |
+
u_bbox = F.interpolate(u, (h, w), mode="bilinear", align_corners=False)
|
42 |
+
v_bbox = F.interpolate(v, (h, w), mode="bilinear", align_corners=False)
|
43 |
+
uv = torch.zeros([2, h, w], dtype=torch.float32, device=u.device)
|
44 |
+
for part_id in range(1, u_bbox.size(1)):
|
45 |
+
uv[0][labels == part_id] = u_bbox[0, part_id][labels == part_id]
|
46 |
+
uv[1][labels == part_id] = v_bbox[0, part_id][labels == part_id]
|
47 |
+
return uv
|
48 |
+
|
49 |
+
|
50 |
+
def resample_uv_to_bbox(
|
51 |
+
predictor_output: DensePoseChartPredictorOutput,
|
52 |
+
labels: torch.Tensor,
|
53 |
+
box_xywh_abs: IntTupleBox,
|
54 |
+
) -> torch.Tensor:
|
55 |
+
"""
|
56 |
+
Resamples U and V coordinate estimates for the given bounding box
|
57 |
+
|
58 |
+
Args:
|
59 |
+
predictor_output (DensePoseChartPredictorOutput): DensePose predictor
|
60 |
+
output to be resampled
|
61 |
+
labels (tensor [H, W] of long): labels obtained by resampling segmentation
|
62 |
+
outputs for the given bounding box
|
63 |
+
box_xywh_abs (tuple of 4 int): bounding box that corresponds to predictor outputs
|
64 |
+
Return:
|
65 |
+
Resampled U and V coordinates - a tensor [2, H, W] of float
|
66 |
+
"""
|
67 |
+
return resample_uv_tensors_to_bbox(
|
68 |
+
predictor_output.u,
|
69 |
+
predictor_output.v,
|
70 |
+
labels,
|
71 |
+
box_xywh_abs,
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
def densepose_chart_predictor_output_to_result(
|
76 |
+
predictor_output: DensePoseChartPredictorOutput, boxes: Boxes
|
77 |
+
) -> DensePoseChartResult:
|
78 |
+
"""
|
79 |
+
Convert densepose chart predictor outputs to results
|
80 |
+
|
81 |
+
Args:
|
82 |
+
predictor_output (DensePoseChartPredictorOutput): DensePose predictor
|
83 |
+
output to be converted to results, must contain only 1 output
|
84 |
+
boxes (Boxes): bounding box that corresponds to the predictor output,
|
85 |
+
must contain only 1 bounding box
|
86 |
+
Return:
|
87 |
+
DensePose chart-based result (DensePoseChartResult)
|
88 |
+
"""
|
89 |
+
assert len(predictor_output) == 1 and len(boxes) == 1, (
|
90 |
+
f"Predictor output to result conversion can operate only single outputs"
|
91 |
+
f", got {len(predictor_output)} predictor outputs and {len(boxes)} boxes"
|
92 |
+
)
|
93 |
+
|
94 |
+
boxes_xyxy_abs = boxes.tensor.clone()
|
95 |
+
boxes_xywh_abs = BoxMode.convert(boxes_xyxy_abs, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
|
96 |
+
box_xywh = make_int_box(boxes_xywh_abs[0])
|
97 |
+
|
98 |
+
labels = resample_fine_and_coarse_segm_to_bbox(predictor_output, box_xywh).squeeze(0)
|
99 |
+
uv = resample_uv_to_bbox(predictor_output, labels, box_xywh)
|
100 |
+
return DensePoseChartResult(labels=labels, uv=uv)
|
101 |
+
|
102 |
+
|
103 |
+
def resample_confidences_to_bbox(
|
104 |
+
predictor_output: DensePoseChartPredictorOutput,
|
105 |
+
labels: torch.Tensor,
|
106 |
+
box_xywh_abs: IntTupleBox,
|
107 |
+
) -> Dict[str, torch.Tensor]:
|
108 |
+
"""
|
109 |
+
Resamples confidences for the given bounding box
|
110 |
+
|
111 |
+
Args:
|
112 |
+
predictor_output (DensePoseChartPredictorOutput): DensePose predictor
|
113 |
+
output to be resampled
|
114 |
+
labels (tensor [H, W] of long): labels obtained by resampling segmentation
|
115 |
+
outputs for the given bounding box
|
116 |
+
box_xywh_abs (tuple of 4 int): bounding box that corresponds to predictor outputs
|
117 |
+
Return:
|
118 |
+
Resampled confidences - a dict of [H, W] tensors of float
|
119 |
+
"""
|
120 |
+
|
121 |
+
x, y, w, h = box_xywh_abs
|
122 |
+
w = max(int(w), 1)
|
123 |
+
h = max(int(h), 1)
|
124 |
+
|
125 |
+
confidence_names = [
|
126 |
+
"sigma_1",
|
127 |
+
"sigma_2",
|
128 |
+
"kappa_u",
|
129 |
+
"kappa_v",
|
130 |
+
"fine_segm_confidence",
|
131 |
+
"coarse_segm_confidence",
|
132 |
+
]
|
133 |
+
confidence_results = {key: None for key in confidence_names}
|
134 |
+
confidence_names = [
|
135 |
+
key for key in confidence_names if getattr(predictor_output, key) is not None
|
136 |
+
]
|
137 |
+
confidence_base = torch.zeros([h, w], dtype=torch.float32, device=predictor_output.u.device)
|
138 |
+
|
139 |
+
# assign data from channels that correspond to the labels
|
140 |
+
for key in confidence_names:
|
141 |
+
resampled_confidence = F.interpolate(
|
142 |
+
getattr(predictor_output, key),
|
143 |
+
(h, w),
|
144 |
+
mode="bilinear",
|
145 |
+
align_corners=False,
|
146 |
+
)
|
147 |
+
result = confidence_base.clone()
|
148 |
+
for part_id in range(1, predictor_output.u.size(1)):
|
149 |
+
if resampled_confidence.size(1) != predictor_output.u.size(1):
|
150 |
+
# confidence is not part-based, don't try to fill it part by part
|
151 |
+
continue
|
152 |
+
result[labels == part_id] = resampled_confidence[0, part_id][labels == part_id]
|
153 |
+
|
154 |
+
if resampled_confidence.size(1) != predictor_output.u.size(1):
|
155 |
+
# confidence is not part-based, fill the data with the first channel
|
156 |
+
# (targeted for segmentation confidences that have only 1 channel)
|
157 |
+
result = resampled_confidence[0, 0]
|
158 |
+
|
159 |
+
confidence_results[key] = result
|
160 |
+
|
161 |
+
return confidence_results # pyre-ignore[7]
|
162 |
+
|
163 |
+
|
164 |
+
def densepose_chart_predictor_output_to_result_with_confidences(
|
165 |
+
predictor_output: DensePoseChartPredictorOutput, boxes: Boxes
|
166 |
+
) -> DensePoseChartResultWithConfidences:
|
167 |
+
"""
|
168 |
+
Convert densepose chart predictor outputs to results
|
169 |
+
|
170 |
+
Args:
|
171 |
+
predictor_output (DensePoseChartPredictorOutput): DensePose predictor
|
172 |
+
output with confidences to be converted to results, must contain only 1 output
|
173 |
+
boxes (Boxes): bounding box that corresponds to the predictor output,
|
174 |
+
must contain only 1 bounding box
|
175 |
+
Return:
|
176 |
+
DensePose chart-based result with confidences (DensePoseChartResultWithConfidences)
|
177 |
+
"""
|
178 |
+
assert len(predictor_output) == 1 and len(boxes) == 1, (
|
179 |
+
f"Predictor output to result conversion can operate only single outputs"
|
180 |
+
f", got {len(predictor_output)} predictor outputs and {len(boxes)} boxes"
|
181 |
+
)
|
182 |
+
|
183 |
+
boxes_xyxy_abs = boxes.tensor.clone()
|
184 |
+
boxes_xywh_abs = BoxMode.convert(boxes_xyxy_abs, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
|
185 |
+
box_xywh = make_int_box(boxes_xywh_abs[0])
|
186 |
+
|
187 |
+
labels = resample_fine_and_coarse_segm_to_bbox(predictor_output, box_xywh).squeeze(0)
|
188 |
+
uv = resample_uv_to_bbox(predictor_output, labels, box_xywh)
|
189 |
+
confidences = resample_confidences_to_bbox(predictor_output, labels, box_xywh)
|
190 |
+
return DensePoseChartResultWithConfidences(labels=labels, uv=uv, **confidences)
|
densepose/converters/hflip.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# pyre-unsafe
|
4 |
+
|
5 |
+
from typing import Any
|
6 |
+
|
7 |
+
from .base import BaseConverter
|
8 |
+
|
9 |
+
|
10 |
+
class HFlipConverter(BaseConverter):
|
11 |
+
"""
|
12 |
+
Converts various DensePose predictor outputs to DensePose results.
|
13 |
+
Each DensePose predictor output type has to register its convertion strategy.
|
14 |
+
"""
|
15 |
+
|
16 |
+
registry = {}
|
17 |
+
dst_type = None
|
18 |
+
|
19 |
+
@classmethod
|
20 |
+
# pyre-fixme[14]: `convert` overrides method defined in `BaseConverter`
|
21 |
+
# inconsistently.
|
22 |
+
def convert(cls, predictor_outputs: Any, transform_data: Any, *args, **kwargs):
|
23 |
+
"""
|
24 |
+
Performs an horizontal flip on DensePose predictor outputs.
|
25 |
+
Does recursive lookup for base classes, so there's no need
|
26 |
+
for explicit registration for derived classes.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
predictor_outputs: DensePose predictor output to be converted to BitMasks
|
30 |
+
transform_data: Anything useful for the flip
|
31 |
+
Return:
|
32 |
+
An instance of the same type as predictor_outputs
|
33 |
+
"""
|
34 |
+
return super(HFlipConverter, cls).convert(
|
35 |
+
predictor_outputs, transform_data, *args, **kwargs
|
36 |
+
)
|
densepose/converters/segm_to_mask.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# pyre-unsafe
|
4 |
+
|
5 |
+
from typing import Any
|
6 |
+
import torch
|
7 |
+
from torch.nn import functional as F
|
8 |
+
|
9 |
+
from detectron2.structures import BitMasks, Boxes, BoxMode
|
10 |
+
|
11 |
+
from .base import IntTupleBox, make_int_box
|
12 |
+
from .to_mask import ImageSizeType
|
13 |
+
|
14 |
+
|
15 |
+
def resample_coarse_segm_tensor_to_bbox(coarse_segm: torch.Tensor, box_xywh_abs: IntTupleBox):
|
16 |
+
"""
|
17 |
+
Resample coarse segmentation tensor to the given
|
18 |
+
bounding box and derive labels for each pixel of the bounding box
|
19 |
+
|
20 |
+
Args:
|
21 |
+
coarse_segm: float tensor of shape [1, K, Hout, Wout]
|
22 |
+
box_xywh_abs (tuple of 4 int): bounding box given by its upper-left
|
23 |
+
corner coordinates, width (W) and height (H)
|
24 |
+
Return:
|
25 |
+
Labels for each pixel of the bounding box, a long tensor of size [1, H, W]
|
26 |
+
"""
|
27 |
+
x, y, w, h = box_xywh_abs
|
28 |
+
w = max(int(w), 1)
|
29 |
+
h = max(int(h), 1)
|
30 |
+
labels = F.interpolate(coarse_segm, (h, w), mode="bilinear", align_corners=False).argmax(dim=1)
|
31 |
+
return labels
|
32 |
+
|
33 |
+
|
34 |
+
def resample_fine_and_coarse_segm_tensors_to_bbox(
|
35 |
+
fine_segm: torch.Tensor, coarse_segm: torch.Tensor, box_xywh_abs: IntTupleBox
|
36 |
+
):
|
37 |
+
"""
|
38 |
+
Resample fine and coarse segmentation tensors to the given
|
39 |
+
bounding box and derive labels for each pixel of the bounding box
|
40 |
+
|
41 |
+
Args:
|
42 |
+
fine_segm: float tensor of shape [1, C, Hout, Wout]
|
43 |
+
coarse_segm: float tensor of shape [1, K, Hout, Wout]
|
44 |
+
box_xywh_abs (tuple of 4 int): bounding box given by its upper-left
|
45 |
+
corner coordinates, width (W) and height (H)
|
46 |
+
Return:
|
47 |
+
Labels for each pixel of the bounding box, a long tensor of size [1, H, W]
|
48 |
+
"""
|
49 |
+
x, y, w, h = box_xywh_abs
|
50 |
+
w = max(int(w), 1)
|
51 |
+
h = max(int(h), 1)
|
52 |
+
# coarse segmentation
|
53 |
+
coarse_segm_bbox = F.interpolate(
|
54 |
+
coarse_segm,
|
55 |
+
(h, w),
|
56 |
+
mode="bilinear",
|
57 |
+
align_corners=False,
|
58 |
+
).argmax(dim=1)
|
59 |
+
# combined coarse and fine segmentation
|
60 |
+
labels = (
|
61 |
+
F.interpolate(fine_segm, (h, w), mode="bilinear", align_corners=False).argmax(dim=1)
|
62 |
+
* (coarse_segm_bbox > 0).long()
|
63 |
+
)
|
64 |
+
return labels
|
65 |
+
|
66 |
+
|
67 |
+
def resample_fine_and_coarse_segm_to_bbox(predictor_output: Any, box_xywh_abs: IntTupleBox):
|
68 |
+
"""
|
69 |
+
Resample fine and coarse segmentation outputs from a predictor to the given
|
70 |
+
bounding box and derive labels for each pixel of the bounding box
|
71 |
+
|
72 |
+
Args:
|
73 |
+
predictor_output: DensePose predictor output that contains segmentation
|
74 |
+
results to be resampled
|
75 |
+
box_xywh_abs (tuple of 4 int): bounding box given by its upper-left
|
76 |
+
corner coordinates, width (W) and height (H)
|
77 |
+
Return:
|
78 |
+
Labels for each pixel of the bounding box, a long tensor of size [1, H, W]
|
79 |
+
"""
|
80 |
+
return resample_fine_and_coarse_segm_tensors_to_bbox(
|
81 |
+
predictor_output.fine_segm,
|
82 |
+
predictor_output.coarse_segm,
|
83 |
+
box_xywh_abs,
|
84 |
+
)
|
85 |
+
|
86 |
+
|
87 |
+
def predictor_output_with_coarse_segm_to_mask(
|
88 |
+
predictor_output: Any, boxes: Boxes, image_size_hw: ImageSizeType
|
89 |
+
) -> BitMasks:
|
90 |
+
"""
|
91 |
+
Convert predictor output with coarse and fine segmentation to a mask.
|
92 |
+
Assumes that predictor output has the following attributes:
|
93 |
+
- coarse_segm (tensor of size [N, D, H, W]): coarse segmentation
|
94 |
+
unnormalized scores for N instances; D is the number of coarse
|
95 |
+
segmentation labels, H and W is the resolution of the estimate
|
96 |
+
|
97 |
+
Args:
|
98 |
+
predictor_output: DensePose predictor output to be converted to mask
|
99 |
+
boxes (Boxes): bounding boxes that correspond to the DensePose
|
100 |
+
predictor outputs
|
101 |
+
image_size_hw (tuple [int, int]): image height Himg and width Wimg
|
102 |
+
Return:
|
103 |
+
BitMasks that contain a bool tensor of size [N, Himg, Wimg] with
|
104 |
+
a mask of the size of the image for each instance
|
105 |
+
"""
|
106 |
+
H, W = image_size_hw
|
107 |
+
boxes_xyxy_abs = boxes.tensor.clone()
|
108 |
+
boxes_xywh_abs = BoxMode.convert(boxes_xyxy_abs, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
|
109 |
+
N = len(boxes_xywh_abs)
|
110 |
+
masks = torch.zeros((N, H, W), dtype=torch.bool, device=boxes.tensor.device)
|
111 |
+
for i in range(len(boxes_xywh_abs)):
|
112 |
+
box_xywh = make_int_box(boxes_xywh_abs[i])
|
113 |
+
box_mask = resample_coarse_segm_tensor_to_bbox(predictor_output[i].coarse_segm, box_xywh)
|
114 |
+
x, y, w, h = box_xywh
|
115 |
+
masks[i, y : y + h, x : x + w] = box_mask
|
116 |
+
|
117 |
+
return BitMasks(masks)
|
118 |
+
|
119 |
+
|
120 |
+
def predictor_output_with_fine_and_coarse_segm_to_mask(
|
121 |
+
predictor_output: Any, boxes: Boxes, image_size_hw: ImageSizeType
|
122 |
+
) -> BitMasks:
|
123 |
+
"""
|
124 |
+
Convert predictor output with coarse and fine segmentation to a mask.
|
125 |
+
Assumes that predictor output has the following attributes:
|
126 |
+
- coarse_segm (tensor of size [N, D, H, W]): coarse segmentation
|
127 |
+
unnormalized scores for N instances; D is the number of coarse
|
128 |
+
segmentation labels, H and W is the resolution of the estimate
|
129 |
+
- fine_segm (tensor of size [N, C, H, W]): fine segmentation
|
130 |
+
unnormalized scores for N instances; C is the number of fine
|
131 |
+
segmentation labels, H and W is the resolution of the estimate
|
132 |
+
|
133 |
+
Args:
|
134 |
+
predictor_output: DensePose predictor output to be converted to mask
|
135 |
+
boxes (Boxes): bounding boxes that correspond to the DensePose
|
136 |
+
predictor outputs
|
137 |
+
image_size_hw (tuple [int, int]): image height Himg and width Wimg
|
138 |
+
Return:
|
139 |
+
BitMasks that contain a bool tensor of size [N, Himg, Wimg] with
|
140 |
+
a mask of the size of the image for each instance
|
141 |
+
"""
|
142 |
+
H, W = image_size_hw
|
143 |
+
boxes_xyxy_abs = boxes.tensor.clone()
|
144 |
+
boxes_xywh_abs = BoxMode.convert(boxes_xyxy_abs, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
|
145 |
+
N = len(boxes_xywh_abs)
|
146 |
+
masks = torch.zeros((N, H, W), dtype=torch.bool, device=boxes.tensor.device)
|
147 |
+
for i in range(len(boxes_xywh_abs)):
|
148 |
+
box_xywh = make_int_box(boxes_xywh_abs[i])
|
149 |
+
labels_i = resample_fine_and_coarse_segm_to_bbox(predictor_output[i], box_xywh)
|
150 |
+
x, y, w, h = box_xywh
|
151 |
+
masks[i, y : y + h, x : x + w] = labels_i > 0
|
152 |
+
return BitMasks(masks)
|
densepose/converters/to_chart_result.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# pyre-unsafe
|
4 |
+
|
5 |
+
from typing import Any
|
6 |
+
|
7 |
+
from detectron2.structures import Boxes
|
8 |
+
|
9 |
+
from ..structures import DensePoseChartResult, DensePoseChartResultWithConfidences
|
10 |
+
from .base import BaseConverter
|
11 |
+
|
12 |
+
|
13 |
+
class ToChartResultConverter(BaseConverter):
|
14 |
+
"""
|
15 |
+
Converts various DensePose predictor outputs to DensePose results.
|
16 |
+
Each DensePose predictor output type has to register its convertion strategy.
|
17 |
+
"""
|
18 |
+
|
19 |
+
registry = {}
|
20 |
+
dst_type = DensePoseChartResult
|
21 |
+
|
22 |
+
@classmethod
|
23 |
+
# pyre-fixme[14]: `convert` overrides method defined in `BaseConverter`
|
24 |
+
# inconsistently.
|
25 |
+
def convert(cls, predictor_outputs: Any, boxes: Boxes, *args, **kwargs) -> DensePoseChartResult:
|
26 |
+
"""
|
27 |
+
Convert DensePose predictor outputs to DensePoseResult using some registered
|
28 |
+
converter. Does recursive lookup for base classes, so there's no need
|
29 |
+
for explicit registration for derived classes.
|
30 |
+
|
31 |
+
Args:
|
32 |
+
densepose_predictor_outputs: DensePose predictor output to be
|
33 |
+
converted to BitMasks
|
34 |
+
boxes (Boxes): bounding boxes that correspond to the DensePose
|
35 |
+
predictor outputs
|
36 |
+
Return:
|
37 |
+
An instance of DensePoseResult. If no suitable converter was found, raises KeyError
|
38 |
+
"""
|
39 |
+
return super(ToChartResultConverter, cls).convert(predictor_outputs, boxes, *args, **kwargs)
|
40 |
+
|
41 |
+
|
42 |
+
class ToChartResultConverterWithConfidences(BaseConverter):
|
43 |
+
"""
|
44 |
+
Converts various DensePose predictor outputs to DensePose results.
|
45 |
+
Each DensePose predictor output type has to register its convertion strategy.
|
46 |
+
"""
|
47 |
+
|
48 |
+
registry = {}
|
49 |
+
dst_type = DensePoseChartResultWithConfidences
|
50 |
+
|
51 |
+
@classmethod
|
52 |
+
# pyre-fixme[14]: `convert` overrides method defined in `BaseConverter`
|
53 |
+
# inconsistently.
|
54 |
+
def convert(
|
55 |
+
cls, predictor_outputs: Any, boxes: Boxes, *args, **kwargs
|
56 |
+
) -> DensePoseChartResultWithConfidences:
|
57 |
+
"""
|
58 |
+
Convert DensePose predictor outputs to DensePoseResult with confidences
|
59 |
+
using some registered converter. Does recursive lookup for base classes,
|
60 |
+
so there's no need for explicit registration for derived classes.
|
61 |
+
|
62 |
+
Args:
|
63 |
+
densepose_predictor_outputs: DensePose predictor output with confidences
|
64 |
+
to be converted to BitMasks
|
65 |
+
boxes (Boxes): bounding boxes that correspond to the DensePose
|
66 |
+
predictor outputs
|
67 |
+
Return:
|
68 |
+
An instance of DensePoseResult. If no suitable converter was found, raises KeyError
|
69 |
+
"""
|
70 |
+
return super(ToChartResultConverterWithConfidences, cls).convert(
|
71 |
+
predictor_outputs, boxes, *args, **kwargs
|
72 |
+
)
|
densepose/converters/to_mask.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# pyre-unsafe
|
4 |
+
|
5 |
+
from typing import Any, Tuple
|
6 |
+
|
7 |
+
from detectron2.structures import BitMasks, Boxes
|
8 |
+
|
9 |
+
from .base import BaseConverter
|
10 |
+
|
11 |
+
ImageSizeType = Tuple[int, int]
|
12 |
+
|
13 |
+
|
14 |
+
class ToMaskConverter(BaseConverter):
|
15 |
+
"""
|
16 |
+
Converts various DensePose predictor outputs to masks
|
17 |
+
in bit mask format (see `BitMasks`). Each DensePose predictor output type
|
18 |
+
has to register its convertion strategy.
|
19 |
+
"""
|
20 |
+
|
21 |
+
registry = {}
|
22 |
+
dst_type = BitMasks
|
23 |
+
|
24 |
+
@classmethod
|
25 |
+
# pyre-fixme[14]: `convert` overrides method defined in `BaseConverter`
|
26 |
+
# inconsistently.
|
27 |
+
def convert(
|
28 |
+
cls,
|
29 |
+
densepose_predictor_outputs: Any,
|
30 |
+
boxes: Boxes,
|
31 |
+
image_size_hw: ImageSizeType,
|
32 |
+
*args,
|
33 |
+
**kwargs
|
34 |
+
) -> BitMasks:
|
35 |
+
"""
|
36 |
+
Convert DensePose predictor outputs to BitMasks using some registered
|
37 |
+
converter. Does recursive lookup for base classes, so there's no need
|
38 |
+
for explicit registration for derived classes.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
densepose_predictor_outputs: DensePose predictor output to be
|
42 |
+
converted to BitMasks
|
43 |
+
boxes (Boxes): bounding boxes that correspond to the DensePose
|
44 |
+
predictor outputs
|
45 |
+
image_size_hw (tuple [int, int]): image height and width
|
46 |
+
Return:
|
47 |
+
An instance of `BitMasks`. If no suitable converter was found, raises KeyError
|
48 |
+
"""
|
49 |
+
return super(ToMaskConverter, cls).convert(
|
50 |
+
densepose_predictor_outputs, boxes, image_size_hw, *args, **kwargs
|
51 |
+
)
|
densepose/data/__init__.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# pyre-unsafe
|
4 |
+
|
5 |
+
from .meshes import builtin
|
6 |
+
from .build import (
|
7 |
+
build_detection_test_loader,
|
8 |
+
build_detection_train_loader,
|
9 |
+
build_combined_loader,
|
10 |
+
build_frame_selector,
|
11 |
+
build_inference_based_loaders,
|
12 |
+
has_inference_based_loaders,
|
13 |
+
BootstrapDatasetFactoryCatalog,
|
14 |
+
)
|
15 |
+
from .combined_loader import CombinedDataLoader
|
16 |
+
from .dataset_mapper import DatasetMapper
|
17 |
+
from .inference_based_loader import InferenceBasedLoader, ScoreBasedFilter
|
18 |
+
from .image_list_dataset import ImageListDataset
|
19 |
+
from .utils import is_relative_local_path, maybe_prepend_base_path
|
20 |
+
|
21 |
+
# ensure the builtin datasets are registered
|
22 |
+
from . import datasets
|
23 |
+
|
24 |
+
# ensure the bootstrap datasets builders are registered
|
25 |
+
from . import build
|
26 |
+
|
27 |
+
__all__ = [k for k in globals().keys() if not k.startswith("_")]
|
densepose/data/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (1.05 kB). View file
|
|
densepose/data/__pycache__/build.cpython-39.pyc
ADDED
Binary file (23.8 kB). View file
|
|
densepose/data/__pycache__/combined_loader.cpython-39.pyc
ADDED
Binary file (1.81 kB). View file
|
|
densepose/data/__pycache__/dataset_mapper.cpython-39.pyc
ADDED
Binary file (5.4 kB). View file
|
|
densepose/data/__pycache__/image_list_dataset.cpython-39.pyc
ADDED
Binary file (2.65 kB). View file
|
|
densepose/data/__pycache__/inference_based_loader.cpython-39.pyc
ADDED
Binary file (5.78 kB). View file
|
|
densepose/data/__pycache__/utils.cpython-39.pyc
ADDED
Binary file (1.62 kB). View file
|
|
densepose/data/build.py
ADDED
@@ -0,0 +1,738 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# pyre-unsafe
|
4 |
+
|
5 |
+
import itertools
|
6 |
+
import logging
|
7 |
+
import numpy as np
|
8 |
+
from collections import UserDict, defaultdict
|
9 |
+
from dataclasses import dataclass
|
10 |
+
from typing import Any, Callable, Collection, Dict, Iterable, List, Optional, Sequence, Tuple
|
11 |
+
import torch
|
12 |
+
from torch.utils.data.dataset import Dataset
|
13 |
+
|
14 |
+
from detectron2.config import CfgNode
|
15 |
+
from detectron2.data.build import build_detection_test_loader as d2_build_detection_test_loader
|
16 |
+
from detectron2.data.build import build_detection_train_loader as d2_build_detection_train_loader
|
17 |
+
from detectron2.data.build import (
|
18 |
+
load_proposals_into_dataset,
|
19 |
+
print_instances_class_histogram,
|
20 |
+
trivial_batch_collator,
|
21 |
+
worker_init_reset_seed,
|
22 |
+
)
|
23 |
+
from detectron2.data.catalog import DatasetCatalog, Metadata, MetadataCatalog
|
24 |
+
from detectron2.data.samplers import TrainingSampler
|
25 |
+
from detectron2.utils.comm import get_world_size
|
26 |
+
|
27 |
+
from densepose.config import get_bootstrap_dataset_config
|
28 |
+
from densepose.modeling import build_densepose_embedder
|
29 |
+
|
30 |
+
from .combined_loader import CombinedDataLoader, Loader
|
31 |
+
from .dataset_mapper import DatasetMapper
|
32 |
+
from .datasets.coco import DENSEPOSE_CSE_KEYS_WITHOUT_MASK, DENSEPOSE_IUV_KEYS_WITHOUT_MASK
|
33 |
+
from .datasets.dataset_type import DatasetType
|
34 |
+
from .inference_based_loader import InferenceBasedLoader, ScoreBasedFilter
|
35 |
+
from .samplers import (
|
36 |
+
DensePoseConfidenceBasedSampler,
|
37 |
+
DensePoseCSEConfidenceBasedSampler,
|
38 |
+
DensePoseCSEUniformSampler,
|
39 |
+
DensePoseUniformSampler,
|
40 |
+
MaskFromDensePoseSampler,
|
41 |
+
PredictionToGroundTruthSampler,
|
42 |
+
)
|
43 |
+
from .transform import ImageResizeTransform
|
44 |
+
from .utils import get_category_to_class_mapping, get_class_to_mesh_name_mapping
|
45 |
+
from .video import (
|
46 |
+
FirstKFramesSelector,
|
47 |
+
FrameSelectionStrategy,
|
48 |
+
LastKFramesSelector,
|
49 |
+
RandomKFramesSelector,
|
50 |
+
VideoKeyframeDataset,
|
51 |
+
video_list_from_file,
|
52 |
+
)
|
53 |
+
|
54 |
+
__all__ = ["build_detection_train_loader", "build_detection_test_loader"]
|
55 |
+
|
56 |
+
|
57 |
+
Instance = Dict[str, Any]
|
58 |
+
InstancePredicate = Callable[[Instance], bool]
|
59 |
+
|
60 |
+
|
61 |
+
def _compute_num_images_per_worker(cfg: CfgNode) -> int:
|
62 |
+
num_workers = get_world_size()
|
63 |
+
images_per_batch = cfg.SOLVER.IMS_PER_BATCH
|
64 |
+
assert (
|
65 |
+
images_per_batch % num_workers == 0
|
66 |
+
), "SOLVER.IMS_PER_BATCH ({}) must be divisible by the number of workers ({}).".format(
|
67 |
+
images_per_batch, num_workers
|
68 |
+
)
|
69 |
+
assert (
|
70 |
+
images_per_batch >= num_workers
|
71 |
+
), "SOLVER.IMS_PER_BATCH ({}) must be larger than the number of workers ({}).".format(
|
72 |
+
images_per_batch, num_workers
|
73 |
+
)
|
74 |
+
images_per_worker = images_per_batch // num_workers
|
75 |
+
return images_per_worker
|
76 |
+
|
77 |
+
|
78 |
+
def _map_category_id_to_contiguous_id(dataset_name: str, dataset_dicts: Iterable[Instance]) -> None:
|
79 |
+
meta = MetadataCatalog.get(dataset_name)
|
80 |
+
for dataset_dict in dataset_dicts:
|
81 |
+
for ann in dataset_dict["annotations"]:
|
82 |
+
ann["category_id"] = meta.thing_dataset_id_to_contiguous_id[ann["category_id"]]
|
83 |
+
|
84 |
+
|
85 |
+
@dataclass
|
86 |
+
class _DatasetCategory:
|
87 |
+
"""
|
88 |
+
Class representing category data in a dataset:
|
89 |
+
- id: category ID, as specified in the dataset annotations file
|
90 |
+
- name: category name, as specified in the dataset annotations file
|
91 |
+
- mapped_id: category ID after applying category maps (DATASETS.CATEGORY_MAPS config option)
|
92 |
+
- mapped_name: category name after applying category maps
|
93 |
+
- dataset_name: dataset in which the category is defined
|
94 |
+
|
95 |
+
For example, when training models in a class-agnostic manner, one could take LVIS 1.0
|
96 |
+
dataset and map the animal categories to the same category as human data from COCO:
|
97 |
+
id = 225
|
98 |
+
name = "cat"
|
99 |
+
mapped_id = 1
|
100 |
+
mapped_name = "person"
|
101 |
+
dataset_name = "lvis_v1_animals_dp_train"
|
102 |
+
"""
|
103 |
+
|
104 |
+
id: int
|
105 |
+
name: str
|
106 |
+
mapped_id: int
|
107 |
+
mapped_name: str
|
108 |
+
dataset_name: str
|
109 |
+
|
110 |
+
|
111 |
+
_MergedCategoriesT = Dict[int, List[_DatasetCategory]]
|
112 |
+
|
113 |
+
|
114 |
+
def _add_category_id_to_contiguous_id_maps_to_metadata(
|
115 |
+
merged_categories: _MergedCategoriesT,
|
116 |
+
) -> None:
|
117 |
+
merged_categories_per_dataset = {}
|
118 |
+
for contiguous_cat_id, cat_id in enumerate(sorted(merged_categories.keys())):
|
119 |
+
for cat in merged_categories[cat_id]:
|
120 |
+
if cat.dataset_name not in merged_categories_per_dataset:
|
121 |
+
merged_categories_per_dataset[cat.dataset_name] = defaultdict(list)
|
122 |
+
merged_categories_per_dataset[cat.dataset_name][cat_id].append(
|
123 |
+
(
|
124 |
+
contiguous_cat_id,
|
125 |
+
cat,
|
126 |
+
)
|
127 |
+
)
|
128 |
+
|
129 |
+
logger = logging.getLogger(__name__)
|
130 |
+
for dataset_name, merged_categories in merged_categories_per_dataset.items():
|
131 |
+
meta = MetadataCatalog.get(dataset_name)
|
132 |
+
if not hasattr(meta, "thing_classes"):
|
133 |
+
meta.thing_classes = []
|
134 |
+
meta.thing_dataset_id_to_contiguous_id = {}
|
135 |
+
meta.thing_dataset_id_to_merged_id = {}
|
136 |
+
else:
|
137 |
+
meta.thing_classes.clear()
|
138 |
+
meta.thing_dataset_id_to_contiguous_id.clear()
|
139 |
+
meta.thing_dataset_id_to_merged_id.clear()
|
140 |
+
logger.info(f"Dataset {dataset_name}: category ID to contiguous ID mapping:")
|
141 |
+
for _cat_id, categories in sorted(merged_categories.items()):
|
142 |
+
added_to_thing_classes = False
|
143 |
+
for contiguous_cat_id, cat in categories:
|
144 |
+
if not added_to_thing_classes:
|
145 |
+
meta.thing_classes.append(cat.mapped_name)
|
146 |
+
added_to_thing_classes = True
|
147 |
+
meta.thing_dataset_id_to_contiguous_id[cat.id] = contiguous_cat_id
|
148 |
+
meta.thing_dataset_id_to_merged_id[cat.id] = cat.mapped_id
|
149 |
+
logger.info(f"{cat.id} ({cat.name}) -> {contiguous_cat_id}")
|
150 |
+
|
151 |
+
|
152 |
+
def _maybe_create_general_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]:
|
153 |
+
def has_annotations(instance: Instance) -> bool:
|
154 |
+
return "annotations" in instance
|
155 |
+
|
156 |
+
def has_only_crowd_anotations(instance: Instance) -> bool:
|
157 |
+
for ann in instance["annotations"]:
|
158 |
+
if ann.get("is_crowd", 0) == 0:
|
159 |
+
return False
|
160 |
+
return True
|
161 |
+
|
162 |
+
def general_keep_instance_predicate(instance: Instance) -> bool:
|
163 |
+
return has_annotations(instance) and not has_only_crowd_anotations(instance)
|
164 |
+
|
165 |
+
if not cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS:
|
166 |
+
return None
|
167 |
+
return general_keep_instance_predicate
|
168 |
+
|
169 |
+
|
170 |
+
def _maybe_create_keypoints_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]:
|
171 |
+
|
172 |
+
min_num_keypoints = cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
|
173 |
+
|
174 |
+
def has_sufficient_num_keypoints(instance: Instance) -> bool:
|
175 |
+
num_kpts = sum(
|
176 |
+
(np.array(ann["keypoints"][2::3]) > 0).sum()
|
177 |
+
for ann in instance["annotations"]
|
178 |
+
if "keypoints" in ann
|
179 |
+
)
|
180 |
+
return num_kpts >= min_num_keypoints
|
181 |
+
|
182 |
+
if cfg.MODEL.KEYPOINT_ON and (min_num_keypoints > 0):
|
183 |
+
return has_sufficient_num_keypoints
|
184 |
+
return None
|
185 |
+
|
186 |
+
|
187 |
+
def _maybe_create_mask_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]:
|
188 |
+
if not cfg.MODEL.MASK_ON:
|
189 |
+
return None
|
190 |
+
|
191 |
+
def has_mask_annotations(instance: Instance) -> bool:
|
192 |
+
return any("segmentation" in ann for ann in instance["annotations"])
|
193 |
+
|
194 |
+
return has_mask_annotations
|
195 |
+
|
196 |
+
|
197 |
+
def _maybe_create_densepose_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]:
|
198 |
+
if not cfg.MODEL.DENSEPOSE_ON:
|
199 |
+
return None
|
200 |
+
|
201 |
+
use_masks = cfg.MODEL.ROI_DENSEPOSE_HEAD.COARSE_SEGM_TRAINED_BY_MASKS
|
202 |
+
|
203 |
+
def has_densepose_annotations(instance: Instance) -> bool:
|
204 |
+
for ann in instance["annotations"]:
|
205 |
+
if all(key in ann for key in DENSEPOSE_IUV_KEYS_WITHOUT_MASK) or all(
|
206 |
+
key in ann for key in DENSEPOSE_CSE_KEYS_WITHOUT_MASK
|
207 |
+
):
|
208 |
+
return True
|
209 |
+
if use_masks and "segmentation" in ann:
|
210 |
+
return True
|
211 |
+
return False
|
212 |
+
|
213 |
+
return has_densepose_annotations
|
214 |
+
|
215 |
+
|
216 |
+
def _maybe_create_specific_keep_instance_predicate(cfg: CfgNode) -> Optional[InstancePredicate]:
|
217 |
+
specific_predicate_creators = [
|
218 |
+
_maybe_create_keypoints_keep_instance_predicate,
|
219 |
+
_maybe_create_mask_keep_instance_predicate,
|
220 |
+
_maybe_create_densepose_keep_instance_predicate,
|
221 |
+
]
|
222 |
+
predicates = [creator(cfg) for creator in specific_predicate_creators]
|
223 |
+
predicates = [p for p in predicates if p is not None]
|
224 |
+
if not predicates:
|
225 |
+
return None
|
226 |
+
|
227 |
+
def combined_predicate(instance: Instance) -> bool:
|
228 |
+
return any(p(instance) for p in predicates)
|
229 |
+
|
230 |
+
return combined_predicate
|
231 |
+
|
232 |
+
|
233 |
+
def _get_train_keep_instance_predicate(cfg: CfgNode):
|
234 |
+
general_keep_predicate = _maybe_create_general_keep_instance_predicate(cfg)
|
235 |
+
combined_specific_keep_predicate = _maybe_create_specific_keep_instance_predicate(cfg)
|
236 |
+
|
237 |
+
def combined_general_specific_keep_predicate(instance: Instance) -> bool:
|
238 |
+
return general_keep_predicate(instance) and combined_specific_keep_predicate(instance)
|
239 |
+
|
240 |
+
if (general_keep_predicate is None) and (combined_specific_keep_predicate is None):
|
241 |
+
return None
|
242 |
+
if general_keep_predicate is None:
|
243 |
+
return combined_specific_keep_predicate
|
244 |
+
if combined_specific_keep_predicate is None:
|
245 |
+
return general_keep_predicate
|
246 |
+
return combined_general_specific_keep_predicate
|
247 |
+
|
248 |
+
|
249 |
+
def _get_test_keep_instance_predicate(cfg: CfgNode):
|
250 |
+
general_keep_predicate = _maybe_create_general_keep_instance_predicate(cfg)
|
251 |
+
return general_keep_predicate
|
252 |
+
|
253 |
+
|
254 |
+
def _maybe_filter_and_map_categories(
|
255 |
+
dataset_name: str, dataset_dicts: List[Instance]
|
256 |
+
) -> List[Instance]:
|
257 |
+
meta = MetadataCatalog.get(dataset_name)
|
258 |
+
category_id_map = meta.thing_dataset_id_to_contiguous_id
|
259 |
+
filtered_dataset_dicts = []
|
260 |
+
for dataset_dict in dataset_dicts:
|
261 |
+
anns = []
|
262 |
+
for ann in dataset_dict["annotations"]:
|
263 |
+
cat_id = ann["category_id"]
|
264 |
+
if cat_id not in category_id_map:
|
265 |
+
continue
|
266 |
+
ann["category_id"] = category_id_map[cat_id]
|
267 |
+
anns.append(ann)
|
268 |
+
dataset_dict["annotations"] = anns
|
269 |
+
filtered_dataset_dicts.append(dataset_dict)
|
270 |
+
return filtered_dataset_dicts
|
271 |
+
|
272 |
+
|
273 |
+
def _add_category_whitelists_to_metadata(cfg: CfgNode) -> None:
|
274 |
+
for dataset_name, whitelisted_cat_ids in cfg.DATASETS.WHITELISTED_CATEGORIES.items():
|
275 |
+
meta = MetadataCatalog.get(dataset_name)
|
276 |
+
meta.whitelisted_categories = whitelisted_cat_ids
|
277 |
+
logger = logging.getLogger(__name__)
|
278 |
+
logger.info(
|
279 |
+
"Whitelisted categories for dataset {}: {}".format(
|
280 |
+
dataset_name, meta.whitelisted_categories
|
281 |
+
)
|
282 |
+
)
|
283 |
+
|
284 |
+
|
285 |
+
def _add_category_maps_to_metadata(cfg: CfgNode) -> None:
|
286 |
+
for dataset_name, category_map in cfg.DATASETS.CATEGORY_MAPS.items():
|
287 |
+
category_map = {
|
288 |
+
int(cat_id_src): int(cat_id_dst) for cat_id_src, cat_id_dst in category_map.items()
|
289 |
+
}
|
290 |
+
meta = MetadataCatalog.get(dataset_name)
|
291 |
+
meta.category_map = category_map
|
292 |
+
logger = logging.getLogger(__name__)
|
293 |
+
logger.info("Category maps for dataset {}: {}".format(dataset_name, meta.category_map))
|
294 |
+
|
295 |
+
|
296 |
+
def _add_category_info_to_bootstrapping_metadata(dataset_name: str, dataset_cfg: CfgNode) -> None:
|
297 |
+
meta = MetadataCatalog.get(dataset_name)
|
298 |
+
meta.category_to_class_mapping = get_category_to_class_mapping(dataset_cfg)
|
299 |
+
meta.categories = dataset_cfg.CATEGORIES
|
300 |
+
meta.max_count_per_category = dataset_cfg.MAX_COUNT_PER_CATEGORY
|
301 |
+
logger = logging.getLogger(__name__)
|
302 |
+
logger.info(
|
303 |
+
"Category to class mapping for dataset {}: {}".format(
|
304 |
+
dataset_name, meta.category_to_class_mapping
|
305 |
+
)
|
306 |
+
)
|
307 |
+
|
308 |
+
|
309 |
+
def _maybe_add_class_to_mesh_name_map_to_metadata(dataset_names: List[str], cfg: CfgNode) -> None:
|
310 |
+
for dataset_name in dataset_names:
|
311 |
+
meta = MetadataCatalog.get(dataset_name)
|
312 |
+
if not hasattr(meta, "class_to_mesh_name"):
|
313 |
+
meta.class_to_mesh_name = get_class_to_mesh_name_mapping(cfg)
|
314 |
+
|
315 |
+
|
316 |
+
def _merge_categories(dataset_names: Collection[str]) -> _MergedCategoriesT:
|
317 |
+
merged_categories = defaultdict(list)
|
318 |
+
category_names = {}
|
319 |
+
for dataset_name in dataset_names:
|
320 |
+
meta = MetadataCatalog.get(dataset_name)
|
321 |
+
whitelisted_categories = meta.get("whitelisted_categories")
|
322 |
+
category_map = meta.get("category_map", {})
|
323 |
+
cat_ids = (
|
324 |
+
whitelisted_categories if whitelisted_categories is not None else meta.categories.keys()
|
325 |
+
)
|
326 |
+
for cat_id in cat_ids:
|
327 |
+
cat_name = meta.categories[cat_id]
|
328 |
+
cat_id_mapped = category_map.get(cat_id, cat_id)
|
329 |
+
if cat_id_mapped == cat_id or cat_id_mapped in cat_ids:
|
330 |
+
category_names[cat_id] = cat_name
|
331 |
+
else:
|
332 |
+
category_names[cat_id] = str(cat_id_mapped)
|
333 |
+
# assign temporary mapped category name, this name can be changed
|
334 |
+
# during the second pass, since mapped ID can correspond to a category
|
335 |
+
# from a different dataset
|
336 |
+
cat_name_mapped = meta.categories[cat_id_mapped]
|
337 |
+
merged_categories[cat_id_mapped].append(
|
338 |
+
_DatasetCategory(
|
339 |
+
id=cat_id,
|
340 |
+
name=cat_name,
|
341 |
+
mapped_id=cat_id_mapped,
|
342 |
+
mapped_name=cat_name_mapped,
|
343 |
+
dataset_name=dataset_name,
|
344 |
+
)
|
345 |
+
)
|
346 |
+
# second pass to assign proper mapped category names
|
347 |
+
for cat_id, categories in merged_categories.items():
|
348 |
+
for cat in categories:
|
349 |
+
if cat_id in category_names and cat.mapped_name != category_names[cat_id]:
|
350 |
+
cat.mapped_name = category_names[cat_id]
|
351 |
+
|
352 |
+
return merged_categories
|
353 |
+
|
354 |
+
|
355 |
+
def _warn_if_merged_different_categories(merged_categories: _MergedCategoriesT) -> None:
|
356 |
+
logger = logging.getLogger(__name__)
|
357 |
+
for cat_id in merged_categories:
|
358 |
+
merged_categories_i = merged_categories[cat_id]
|
359 |
+
first_cat_name = merged_categories_i[0].name
|
360 |
+
if len(merged_categories_i) > 1 and not all(
|
361 |
+
cat.name == first_cat_name for cat in merged_categories_i[1:]
|
362 |
+
):
|
363 |
+
cat_summary_str = ", ".join(
|
364 |
+
[f"{cat.id} ({cat.name}) from {cat.dataset_name}" for cat in merged_categories_i]
|
365 |
+
)
|
366 |
+
logger.warning(
|
367 |
+
f"Merged category {cat_id} corresponds to the following categories: "
|
368 |
+
f"{cat_summary_str}"
|
369 |
+
)
|
370 |
+
|
371 |
+
|
372 |
+
def combine_detection_dataset_dicts(
|
373 |
+
dataset_names: Collection[str],
|
374 |
+
keep_instance_predicate: Optional[InstancePredicate] = None,
|
375 |
+
proposal_files: Optional[Collection[str]] = None,
|
376 |
+
) -> List[Instance]:
|
377 |
+
"""
|
378 |
+
Load and prepare dataset dicts for training / testing
|
379 |
+
|
380 |
+
Args:
|
381 |
+
dataset_names (Collection[str]): a list of dataset names
|
382 |
+
keep_instance_predicate (Callable: Dict[str, Any] -> bool): predicate
|
383 |
+
applied to instance dicts which defines whether to keep the instance
|
384 |
+
proposal_files (Collection[str]): if given, a list of object proposal files
|
385 |
+
that match each dataset in `dataset_names`.
|
386 |
+
"""
|
387 |
+
assert len(dataset_names)
|
388 |
+
if proposal_files is None:
|
389 |
+
proposal_files = [None] * len(dataset_names)
|
390 |
+
assert len(dataset_names) == len(proposal_files)
|
391 |
+
# load datasets and metadata
|
392 |
+
dataset_name_to_dicts = {}
|
393 |
+
for dataset_name in dataset_names:
|
394 |
+
dataset_name_to_dicts[dataset_name] = DatasetCatalog.get(dataset_name)
|
395 |
+
assert len(dataset_name_to_dicts), f"Dataset '{dataset_name}' is empty!"
|
396 |
+
# merge categories, requires category metadata to be loaded
|
397 |
+
# cat_id -> [(orig_cat_id, cat_name, dataset_name)]
|
398 |
+
merged_categories = _merge_categories(dataset_names)
|
399 |
+
_warn_if_merged_different_categories(merged_categories)
|
400 |
+
merged_category_names = [
|
401 |
+
merged_categories[cat_id][0].mapped_name for cat_id in sorted(merged_categories)
|
402 |
+
]
|
403 |
+
# map to contiguous category IDs
|
404 |
+
_add_category_id_to_contiguous_id_maps_to_metadata(merged_categories)
|
405 |
+
# load annotations and dataset metadata
|
406 |
+
for dataset_name, proposal_file in zip(dataset_names, proposal_files):
|
407 |
+
dataset_dicts = dataset_name_to_dicts[dataset_name]
|
408 |
+
assert len(dataset_dicts), f"Dataset '{dataset_name}' is empty!"
|
409 |
+
if proposal_file is not None:
|
410 |
+
dataset_dicts = load_proposals_into_dataset(dataset_dicts, proposal_file)
|
411 |
+
dataset_dicts = _maybe_filter_and_map_categories(dataset_name, dataset_dicts)
|
412 |
+
print_instances_class_histogram(dataset_dicts, merged_category_names)
|
413 |
+
dataset_name_to_dicts[dataset_name] = dataset_dicts
|
414 |
+
|
415 |
+
if keep_instance_predicate is not None:
|
416 |
+
all_datasets_dicts_plain = [
|
417 |
+
d
|
418 |
+
for d in itertools.chain.from_iterable(dataset_name_to_dicts.values())
|
419 |
+
if keep_instance_predicate(d)
|
420 |
+
]
|
421 |
+
else:
|
422 |
+
all_datasets_dicts_plain = list(
|
423 |
+
itertools.chain.from_iterable(dataset_name_to_dicts.values())
|
424 |
+
)
|
425 |
+
return all_datasets_dicts_plain
|
426 |
+
|
427 |
+
|
428 |
+
def build_detection_train_loader(cfg: CfgNode, mapper=None):
|
429 |
+
"""
|
430 |
+
A data loader is created in a way similar to that of Detectron2.
|
431 |
+
The main differences are:
|
432 |
+
- it allows to combine datasets with different but compatible object category sets
|
433 |
+
|
434 |
+
The data loader is created by the following steps:
|
435 |
+
1. Use the dataset names in config to query :class:`DatasetCatalog`, and obtain a list of dicts.
|
436 |
+
2. Start workers to work on the dicts. Each worker will:
|
437 |
+
* Map each metadata dict into another format to be consumed by the model.
|
438 |
+
* Batch them by simply putting dicts into a list.
|
439 |
+
The batched ``list[mapped_dict]`` is what this dataloader will return.
|
440 |
+
|
441 |
+
Args:
|
442 |
+
cfg (CfgNode): the config
|
443 |
+
mapper (callable): a callable which takes a sample (dict) from dataset and
|
444 |
+
returns the format to be consumed by the model.
|
445 |
+
By default it will be `DatasetMapper(cfg, True)`.
|
446 |
+
|
447 |
+
Returns:
|
448 |
+
an infinite iterator of training data
|
449 |
+
"""
|
450 |
+
|
451 |
+
_add_category_whitelists_to_metadata(cfg)
|
452 |
+
_add_category_maps_to_metadata(cfg)
|
453 |
+
_maybe_add_class_to_mesh_name_map_to_metadata(cfg.DATASETS.TRAIN, cfg)
|
454 |
+
dataset_dicts = combine_detection_dataset_dicts(
|
455 |
+
cfg.DATASETS.TRAIN,
|
456 |
+
keep_instance_predicate=_get_train_keep_instance_predicate(cfg),
|
457 |
+
proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
|
458 |
+
)
|
459 |
+
if mapper is None:
|
460 |
+
mapper = DatasetMapper(cfg, True)
|
461 |
+
return d2_build_detection_train_loader(cfg, dataset=dataset_dicts, mapper=mapper)
|
462 |
+
|
463 |
+
|
464 |
+
def build_detection_test_loader(cfg, dataset_name, mapper=None):
|
465 |
+
"""
|
466 |
+
Similar to `build_detection_train_loader`.
|
467 |
+
But this function uses the given `dataset_name` argument (instead of the names in cfg),
|
468 |
+
and uses batch size 1.
|
469 |
+
|
470 |
+
Args:
|
471 |
+
cfg: a detectron2 CfgNode
|
472 |
+
dataset_name (str): a name of the dataset that's available in the DatasetCatalog
|
473 |
+
mapper (callable): a callable which takes a sample (dict) from dataset
|
474 |
+
and returns the format to be consumed by the model.
|
475 |
+
By default it will be `DatasetMapper(cfg, False)`.
|
476 |
+
|
477 |
+
Returns:
|
478 |
+
DataLoader: a torch DataLoader, that loads the given detection
|
479 |
+
dataset, with test-time transformation and batching.
|
480 |
+
"""
|
481 |
+
_add_category_whitelists_to_metadata(cfg)
|
482 |
+
_add_category_maps_to_metadata(cfg)
|
483 |
+
_maybe_add_class_to_mesh_name_map_to_metadata([dataset_name], cfg)
|
484 |
+
dataset_dicts = combine_detection_dataset_dicts(
|
485 |
+
[dataset_name],
|
486 |
+
keep_instance_predicate=_get_test_keep_instance_predicate(cfg),
|
487 |
+
proposal_files=(
|
488 |
+
[cfg.DATASETS.PROPOSAL_FILES_TEST[list(cfg.DATASETS.TEST).index(dataset_name)]]
|
489 |
+
if cfg.MODEL.LOAD_PROPOSALS
|
490 |
+
else None
|
491 |
+
),
|
492 |
+
)
|
493 |
+
sampler = None
|
494 |
+
if not cfg.DENSEPOSE_EVALUATION.DISTRIBUTED_INFERENCE:
|
495 |
+
sampler = torch.utils.data.SequentialSampler(dataset_dicts)
|
496 |
+
if mapper is None:
|
497 |
+
mapper = DatasetMapper(cfg, False)
|
498 |
+
return d2_build_detection_test_loader(
|
499 |
+
dataset_dicts, mapper=mapper, num_workers=cfg.DATALOADER.NUM_WORKERS, sampler=sampler
|
500 |
+
)
|
501 |
+
|
502 |
+
|
503 |
+
def build_frame_selector(cfg: CfgNode):
|
504 |
+
strategy = FrameSelectionStrategy(cfg.STRATEGY)
|
505 |
+
if strategy == FrameSelectionStrategy.RANDOM_K:
|
506 |
+
frame_selector = RandomKFramesSelector(cfg.NUM_IMAGES)
|
507 |
+
elif strategy == FrameSelectionStrategy.FIRST_K:
|
508 |
+
frame_selector = FirstKFramesSelector(cfg.NUM_IMAGES)
|
509 |
+
elif strategy == FrameSelectionStrategy.LAST_K:
|
510 |
+
frame_selector = LastKFramesSelector(cfg.NUM_IMAGES)
|
511 |
+
elif strategy == FrameSelectionStrategy.ALL:
|
512 |
+
frame_selector = None
|
513 |
+
# pyre-fixme[61]: `frame_selector` may not be initialized here.
|
514 |
+
return frame_selector
|
515 |
+
|
516 |
+
|
517 |
+
def build_transform(cfg: CfgNode, data_type: str):
|
518 |
+
if cfg.TYPE == "resize":
|
519 |
+
if data_type == "image":
|
520 |
+
return ImageResizeTransform(cfg.MIN_SIZE, cfg.MAX_SIZE)
|
521 |
+
raise ValueError(f"Unknown transform {cfg.TYPE} for data type {data_type}")
|
522 |
+
|
523 |
+
|
524 |
+
def build_combined_loader(cfg: CfgNode, loaders: Collection[Loader], ratios: Sequence[float]):
|
525 |
+
images_per_worker = _compute_num_images_per_worker(cfg)
|
526 |
+
return CombinedDataLoader(loaders, images_per_worker, ratios)
|
527 |
+
|
528 |
+
|
529 |
+
def build_bootstrap_dataset(dataset_name: str, cfg: CfgNode) -> Sequence[torch.Tensor]:
|
530 |
+
"""
|
531 |
+
Build dataset that provides data to bootstrap on
|
532 |
+
|
533 |
+
Args:
|
534 |
+
dataset_name (str): Name of the dataset, needs to have associated metadata
|
535 |
+
to load the data
|
536 |
+
cfg (CfgNode): bootstrapping config
|
537 |
+
Returns:
|
538 |
+
Sequence[Tensor] - dataset that provides image batches, Tensors of size
|
539 |
+
[N, C, H, W] of type float32
|
540 |
+
"""
|
541 |
+
logger = logging.getLogger(__name__)
|
542 |
+
_add_category_info_to_bootstrapping_metadata(dataset_name, cfg)
|
543 |
+
meta = MetadataCatalog.get(dataset_name)
|
544 |
+
factory = BootstrapDatasetFactoryCatalog.get(meta.dataset_type)
|
545 |
+
dataset = None
|
546 |
+
if factory is not None:
|
547 |
+
dataset = factory(meta, cfg)
|
548 |
+
if dataset is None:
|
549 |
+
logger.warning(f"Failed to create dataset {dataset_name} of type {meta.dataset_type}")
|
550 |
+
return dataset
|
551 |
+
|
552 |
+
|
553 |
+
def build_data_sampler(cfg: CfgNode, sampler_cfg: CfgNode, embedder: Optional[torch.nn.Module]):
|
554 |
+
if sampler_cfg.TYPE == "densepose_uniform":
|
555 |
+
data_sampler = PredictionToGroundTruthSampler()
|
556 |
+
# transform densepose pred -> gt
|
557 |
+
data_sampler.register_sampler(
|
558 |
+
"pred_densepose",
|
559 |
+
"gt_densepose",
|
560 |
+
DensePoseUniformSampler(count_per_class=sampler_cfg.COUNT_PER_CLASS),
|
561 |
+
)
|
562 |
+
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler())
|
563 |
+
return data_sampler
|
564 |
+
elif sampler_cfg.TYPE == "densepose_UV_confidence":
|
565 |
+
data_sampler = PredictionToGroundTruthSampler()
|
566 |
+
# transform densepose pred -> gt
|
567 |
+
data_sampler.register_sampler(
|
568 |
+
"pred_densepose",
|
569 |
+
"gt_densepose",
|
570 |
+
DensePoseConfidenceBasedSampler(
|
571 |
+
confidence_channel="sigma_2",
|
572 |
+
count_per_class=sampler_cfg.COUNT_PER_CLASS,
|
573 |
+
search_proportion=0.5,
|
574 |
+
),
|
575 |
+
)
|
576 |
+
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler())
|
577 |
+
return data_sampler
|
578 |
+
elif sampler_cfg.TYPE == "densepose_fine_segm_confidence":
|
579 |
+
data_sampler = PredictionToGroundTruthSampler()
|
580 |
+
# transform densepose pred -> gt
|
581 |
+
data_sampler.register_sampler(
|
582 |
+
"pred_densepose",
|
583 |
+
"gt_densepose",
|
584 |
+
DensePoseConfidenceBasedSampler(
|
585 |
+
confidence_channel="fine_segm_confidence",
|
586 |
+
count_per_class=sampler_cfg.COUNT_PER_CLASS,
|
587 |
+
search_proportion=0.5,
|
588 |
+
),
|
589 |
+
)
|
590 |
+
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler())
|
591 |
+
return data_sampler
|
592 |
+
elif sampler_cfg.TYPE == "densepose_coarse_segm_confidence":
|
593 |
+
data_sampler = PredictionToGroundTruthSampler()
|
594 |
+
# transform densepose pred -> gt
|
595 |
+
data_sampler.register_sampler(
|
596 |
+
"pred_densepose",
|
597 |
+
"gt_densepose",
|
598 |
+
DensePoseConfidenceBasedSampler(
|
599 |
+
confidence_channel="coarse_segm_confidence",
|
600 |
+
count_per_class=sampler_cfg.COUNT_PER_CLASS,
|
601 |
+
search_proportion=0.5,
|
602 |
+
),
|
603 |
+
)
|
604 |
+
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler())
|
605 |
+
return data_sampler
|
606 |
+
elif sampler_cfg.TYPE == "densepose_cse_uniform":
|
607 |
+
assert embedder is not None
|
608 |
+
data_sampler = PredictionToGroundTruthSampler()
|
609 |
+
# transform densepose pred -> gt
|
610 |
+
data_sampler.register_sampler(
|
611 |
+
"pred_densepose",
|
612 |
+
"gt_densepose",
|
613 |
+
DensePoseCSEUniformSampler(
|
614 |
+
cfg=cfg,
|
615 |
+
use_gt_categories=sampler_cfg.USE_GROUND_TRUTH_CATEGORIES,
|
616 |
+
embedder=embedder,
|
617 |
+
count_per_class=sampler_cfg.COUNT_PER_CLASS,
|
618 |
+
),
|
619 |
+
)
|
620 |
+
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler())
|
621 |
+
return data_sampler
|
622 |
+
elif sampler_cfg.TYPE == "densepose_cse_coarse_segm_confidence":
|
623 |
+
assert embedder is not None
|
624 |
+
data_sampler = PredictionToGroundTruthSampler()
|
625 |
+
# transform densepose pred -> gt
|
626 |
+
data_sampler.register_sampler(
|
627 |
+
"pred_densepose",
|
628 |
+
"gt_densepose",
|
629 |
+
DensePoseCSEConfidenceBasedSampler(
|
630 |
+
cfg=cfg,
|
631 |
+
use_gt_categories=sampler_cfg.USE_GROUND_TRUTH_CATEGORIES,
|
632 |
+
embedder=embedder,
|
633 |
+
confidence_channel="coarse_segm_confidence",
|
634 |
+
count_per_class=sampler_cfg.COUNT_PER_CLASS,
|
635 |
+
search_proportion=0.5,
|
636 |
+
),
|
637 |
+
)
|
638 |
+
data_sampler.register_sampler("pred_densepose", "gt_masks", MaskFromDensePoseSampler())
|
639 |
+
return data_sampler
|
640 |
+
|
641 |
+
raise ValueError(f"Unknown data sampler type {sampler_cfg.TYPE}")
|
642 |
+
|
643 |
+
|
644 |
+
def build_data_filter(cfg: CfgNode):
|
645 |
+
if cfg.TYPE == "detection_score":
|
646 |
+
min_score = cfg.MIN_VALUE
|
647 |
+
return ScoreBasedFilter(min_score=min_score)
|
648 |
+
raise ValueError(f"Unknown data filter type {cfg.TYPE}")
|
649 |
+
|
650 |
+
|
651 |
+
def build_inference_based_loader(
|
652 |
+
cfg: CfgNode,
|
653 |
+
dataset_cfg: CfgNode,
|
654 |
+
model: torch.nn.Module,
|
655 |
+
embedder: Optional[torch.nn.Module] = None,
|
656 |
+
) -> InferenceBasedLoader:
|
657 |
+
"""
|
658 |
+
Constructs data loader based on inference results of a model.
|
659 |
+
"""
|
660 |
+
dataset = build_bootstrap_dataset(dataset_cfg.DATASET, dataset_cfg.IMAGE_LOADER)
|
661 |
+
meta = MetadataCatalog.get(dataset_cfg.DATASET)
|
662 |
+
training_sampler = TrainingSampler(len(dataset))
|
663 |
+
data_loader = torch.utils.data.DataLoader(
|
664 |
+
dataset, # pyre-ignore[6]
|
665 |
+
batch_size=dataset_cfg.IMAGE_LOADER.BATCH_SIZE,
|
666 |
+
sampler=training_sampler,
|
667 |
+
num_workers=dataset_cfg.IMAGE_LOADER.NUM_WORKERS,
|
668 |
+
collate_fn=trivial_batch_collator,
|
669 |
+
worker_init_fn=worker_init_reset_seed,
|
670 |
+
)
|
671 |
+
return InferenceBasedLoader(
|
672 |
+
model,
|
673 |
+
data_loader=data_loader,
|
674 |
+
data_sampler=build_data_sampler(cfg, dataset_cfg.DATA_SAMPLER, embedder),
|
675 |
+
data_filter=build_data_filter(dataset_cfg.FILTER),
|
676 |
+
shuffle=True,
|
677 |
+
batch_size=dataset_cfg.INFERENCE.OUTPUT_BATCH_SIZE,
|
678 |
+
inference_batch_size=dataset_cfg.INFERENCE.INPUT_BATCH_SIZE,
|
679 |
+
category_to_class_mapping=meta.category_to_class_mapping,
|
680 |
+
)
|
681 |
+
|
682 |
+
|
683 |
+
def has_inference_based_loaders(cfg: CfgNode) -> bool:
|
684 |
+
"""
|
685 |
+
Returns True, if at least one inferense-based loader must
|
686 |
+
be instantiated for training
|
687 |
+
"""
|
688 |
+
return len(cfg.BOOTSTRAP_DATASETS) > 0
|
689 |
+
|
690 |
+
|
691 |
+
def build_inference_based_loaders(
|
692 |
+
cfg: CfgNode, model: torch.nn.Module
|
693 |
+
) -> Tuple[List[InferenceBasedLoader], List[float]]:
|
694 |
+
loaders = []
|
695 |
+
ratios = []
|
696 |
+
embedder = build_densepose_embedder(cfg).to(device=model.device) # pyre-ignore[16]
|
697 |
+
for dataset_spec in cfg.BOOTSTRAP_DATASETS:
|
698 |
+
dataset_cfg = get_bootstrap_dataset_config().clone()
|
699 |
+
dataset_cfg.merge_from_other_cfg(CfgNode(dataset_spec))
|
700 |
+
loader = build_inference_based_loader(cfg, dataset_cfg, model, embedder)
|
701 |
+
loaders.append(loader)
|
702 |
+
ratios.append(dataset_cfg.RATIO)
|
703 |
+
return loaders, ratios
|
704 |
+
|
705 |
+
|
706 |
+
def build_video_list_dataset(meta: Metadata, cfg: CfgNode):
|
707 |
+
video_list_fpath = meta.video_list_fpath
|
708 |
+
video_base_path = meta.video_base_path
|
709 |
+
category = meta.category
|
710 |
+
if cfg.TYPE == "video_keyframe":
|
711 |
+
frame_selector = build_frame_selector(cfg.SELECT)
|
712 |
+
transform = build_transform(cfg.TRANSFORM, data_type="image")
|
713 |
+
video_list = video_list_from_file(video_list_fpath, video_base_path)
|
714 |
+
keyframe_helper_fpath = getattr(cfg, "KEYFRAME_HELPER", None)
|
715 |
+
return VideoKeyframeDataset(
|
716 |
+
video_list, category, frame_selector, transform, keyframe_helper_fpath
|
717 |
+
)
|
718 |
+
|
719 |
+
|
720 |
+
class _BootstrapDatasetFactoryCatalog(UserDict):
|
721 |
+
"""
|
722 |
+
A global dictionary that stores information about bootstrapped datasets creation functions
|
723 |
+
from metadata and config, for diverse DatasetType
|
724 |
+
"""
|
725 |
+
|
726 |
+
def register(self, dataset_type: DatasetType, factory: Callable[[Metadata, CfgNode], Dataset]):
|
727 |
+
"""
|
728 |
+
Args:
|
729 |
+
dataset_type (DatasetType): a DatasetType e.g. DatasetType.VIDEO_LIST
|
730 |
+
factory (Callable[Metadata, CfgNode]): a callable which takes Metadata and cfg
|
731 |
+
arguments and returns a dataset object.
|
732 |
+
"""
|
733 |
+
assert dataset_type not in self, "Dataset '{}' is already registered!".format(dataset_type)
|
734 |
+
self[dataset_type] = factory
|
735 |
+
|
736 |
+
|
737 |
+
BootstrapDatasetFactoryCatalog = _BootstrapDatasetFactoryCatalog()
|
738 |
+
BootstrapDatasetFactoryCatalog.register(DatasetType.VIDEO_LIST, build_video_list_dataset)
|
densepose/data/combined_loader.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# pyre-unsafe
|
4 |
+
|
5 |
+
import random
|
6 |
+
from collections import deque
|
7 |
+
from typing import Any, Collection, Deque, Iterable, Iterator, List, Sequence
|
8 |
+
|
9 |
+
Loader = Iterable[Any]
|
10 |
+
|
11 |
+
|
12 |
+
def _pooled_next(iterator: Iterator[Any], pool: Deque[Any]):
|
13 |
+
if not pool:
|
14 |
+
pool.extend(next(iterator))
|
15 |
+
return pool.popleft()
|
16 |
+
|
17 |
+
|
18 |
+
class CombinedDataLoader:
|
19 |
+
"""
|
20 |
+
Combines data loaders using the provided sampling ratios
|
21 |
+
"""
|
22 |
+
|
23 |
+
BATCH_COUNT = 100
|
24 |
+
|
25 |
+
def __init__(self, loaders: Collection[Loader], batch_size: int, ratios: Sequence[float]):
|
26 |
+
self.loaders = loaders
|
27 |
+
self.batch_size = batch_size
|
28 |
+
self.ratios = ratios
|
29 |
+
|
30 |
+
def __iter__(self) -> Iterator[List[Any]]:
|
31 |
+
iters = [iter(loader) for loader in self.loaders]
|
32 |
+
indices = []
|
33 |
+
pool = [deque()] * len(iters)
|
34 |
+
# infinite iterator, as in D2
|
35 |
+
while True:
|
36 |
+
if not indices:
|
37 |
+
# just a buffer of indices, its size doesn't matter
|
38 |
+
# as long as it's a multiple of batch_size
|
39 |
+
k = self.batch_size * self.BATCH_COUNT
|
40 |
+
indices = random.choices(range(len(self.loaders)), self.ratios, k=k)
|
41 |
+
try:
|
42 |
+
batch = [_pooled_next(iters[i], pool[i]) for i in indices[: self.batch_size]]
|
43 |
+
except StopIteration:
|
44 |
+
break
|
45 |
+
indices = indices[self.batch_size :]
|
46 |
+
yield batch
|
densepose/data/dataset_mapper.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
|
4 |
+
# pyre-unsafe
|
5 |
+
|
6 |
+
import copy
|
7 |
+
import logging
|
8 |
+
from typing import Any, Dict, List, Tuple
|
9 |
+
import torch
|
10 |
+
|
11 |
+
from detectron2.data import MetadataCatalog
|
12 |
+
from detectron2.data import detection_utils as utils
|
13 |
+
from detectron2.data import transforms as T
|
14 |
+
from detectron2.layers import ROIAlign
|
15 |
+
from detectron2.structures import BoxMode
|
16 |
+
from detectron2.utils.file_io import PathManager
|
17 |
+
|
18 |
+
from densepose.structures import DensePoseDataRelative, DensePoseList, DensePoseTransformData
|
19 |
+
|
20 |
+
|
21 |
+
def build_augmentation(cfg, is_train):
|
22 |
+
logger = logging.getLogger(__name__)
|
23 |
+
result = utils.build_augmentation(cfg, is_train)
|
24 |
+
if is_train:
|
25 |
+
random_rotation = T.RandomRotation(
|
26 |
+
cfg.INPUT.ROTATION_ANGLES, expand=False, sample_style="choice"
|
27 |
+
)
|
28 |
+
result.append(random_rotation)
|
29 |
+
logger.info("DensePose-specific augmentation used in training: " + str(random_rotation))
|
30 |
+
return result
|
31 |
+
|
32 |
+
|
33 |
+
class DatasetMapper:
|
34 |
+
"""
|
35 |
+
A customized version of `detectron2.data.DatasetMapper`
|
36 |
+
"""
|
37 |
+
|
38 |
+
def __init__(self, cfg, is_train=True):
|
39 |
+
self.augmentation = build_augmentation(cfg, is_train)
|
40 |
+
|
41 |
+
# fmt: off
|
42 |
+
self.img_format = cfg.INPUT.FORMAT
|
43 |
+
self.mask_on = (
|
44 |
+
cfg.MODEL.MASK_ON or (
|
45 |
+
cfg.MODEL.DENSEPOSE_ON
|
46 |
+
and cfg.MODEL.ROI_DENSEPOSE_HEAD.COARSE_SEGM_TRAINED_BY_MASKS)
|
47 |
+
)
|
48 |
+
self.keypoint_on = cfg.MODEL.KEYPOINT_ON
|
49 |
+
self.densepose_on = cfg.MODEL.DENSEPOSE_ON
|
50 |
+
assert not cfg.MODEL.LOAD_PROPOSALS, "not supported yet"
|
51 |
+
# fmt: on
|
52 |
+
if self.keypoint_on and is_train:
|
53 |
+
# Flip only makes sense in training
|
54 |
+
self.keypoint_hflip_indices = utils.create_keypoint_hflip_indices(cfg.DATASETS.TRAIN)
|
55 |
+
else:
|
56 |
+
self.keypoint_hflip_indices = None
|
57 |
+
|
58 |
+
if self.densepose_on:
|
59 |
+
densepose_transform_srcs = [
|
60 |
+
MetadataCatalog.get(ds).densepose_transform_src
|
61 |
+
for ds in cfg.DATASETS.TRAIN + cfg.DATASETS.TEST
|
62 |
+
]
|
63 |
+
assert len(densepose_transform_srcs) > 0
|
64 |
+
# TODO: check that DensePose transformation data is the same for
|
65 |
+
# all the datasets. Otherwise one would have to pass DB ID with
|
66 |
+
# each entry to select proper transformation data. For now, since
|
67 |
+
# all DensePose annotated data uses the same data semantics, we
|
68 |
+
# omit this check.
|
69 |
+
densepose_transform_data_fpath = PathManager.get_local_path(densepose_transform_srcs[0])
|
70 |
+
self.densepose_transform_data = DensePoseTransformData.load(
|
71 |
+
densepose_transform_data_fpath
|
72 |
+
)
|
73 |
+
|
74 |
+
self.is_train = is_train
|
75 |
+
|
76 |
+
def __call__(self, dataset_dict):
|
77 |
+
"""
|
78 |
+
Args:
|
79 |
+
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.
|
80 |
+
|
81 |
+
Returns:
|
82 |
+
dict: a format that builtin models in detectron2 accept
|
83 |
+
"""
|
84 |
+
dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below
|
85 |
+
image = utils.read_image(dataset_dict["file_name"], format=self.img_format)
|
86 |
+
utils.check_image_size(dataset_dict, image)
|
87 |
+
|
88 |
+
image, transforms = T.apply_transform_gens(self.augmentation, image)
|
89 |
+
image_shape = image.shape[:2] # h, w
|
90 |
+
dataset_dict["image"] = torch.as_tensor(image.transpose(2, 0, 1).astype("float32"))
|
91 |
+
|
92 |
+
if not self.is_train:
|
93 |
+
dataset_dict.pop("annotations", None)
|
94 |
+
return dataset_dict
|
95 |
+
|
96 |
+
for anno in dataset_dict["annotations"]:
|
97 |
+
if not self.mask_on:
|
98 |
+
anno.pop("segmentation", None)
|
99 |
+
if not self.keypoint_on:
|
100 |
+
anno.pop("keypoints", None)
|
101 |
+
|
102 |
+
# USER: Implement additional transformations if you have other types of data
|
103 |
+
# USER: Don't call transpose_densepose if you don't need
|
104 |
+
annos = [
|
105 |
+
self._transform_densepose(
|
106 |
+
utils.transform_instance_annotations(
|
107 |
+
obj, transforms, image_shape, keypoint_hflip_indices=self.keypoint_hflip_indices
|
108 |
+
),
|
109 |
+
transforms,
|
110 |
+
)
|
111 |
+
for obj in dataset_dict.pop("annotations")
|
112 |
+
if obj.get("iscrowd", 0) == 0
|
113 |
+
]
|
114 |
+
|
115 |
+
if self.mask_on:
|
116 |
+
self._add_densepose_masks_as_segmentation(annos, image_shape)
|
117 |
+
|
118 |
+
instances = utils.annotations_to_instances(annos, image_shape, mask_format="bitmask")
|
119 |
+
densepose_annotations = [obj.get("densepose") for obj in annos]
|
120 |
+
if densepose_annotations and not all(v is None for v in densepose_annotations):
|
121 |
+
instances.gt_densepose = DensePoseList(
|
122 |
+
densepose_annotations, instances.gt_boxes, image_shape
|
123 |
+
)
|
124 |
+
|
125 |
+
dataset_dict["instances"] = instances[instances.gt_boxes.nonempty()]
|
126 |
+
return dataset_dict
|
127 |
+
|
128 |
+
def _transform_densepose(self, annotation, transforms):
|
129 |
+
if not self.densepose_on:
|
130 |
+
return annotation
|
131 |
+
|
132 |
+
# Handle densepose annotations
|
133 |
+
is_valid, reason_not_valid = DensePoseDataRelative.validate_annotation(annotation)
|
134 |
+
if is_valid:
|
135 |
+
densepose_data = DensePoseDataRelative(annotation, cleanup=True)
|
136 |
+
densepose_data.apply_transform(transforms, self.densepose_transform_data)
|
137 |
+
annotation["densepose"] = densepose_data
|
138 |
+
else:
|
139 |
+
# logger = logging.getLogger(__name__)
|
140 |
+
# logger.debug("Could not load DensePose annotation: {}".format(reason_not_valid))
|
141 |
+
DensePoseDataRelative.cleanup_annotation(annotation)
|
142 |
+
# NOTE: annotations for certain instances may be unavailable.
|
143 |
+
# 'None' is accepted by the DensePostList data structure.
|
144 |
+
annotation["densepose"] = None
|
145 |
+
return annotation
|
146 |
+
|
147 |
+
def _add_densepose_masks_as_segmentation(
|
148 |
+
self, annotations: List[Dict[str, Any]], image_shape_hw: Tuple[int, int]
|
149 |
+
):
|
150 |
+
for obj in annotations:
|
151 |
+
if ("densepose" not in obj) or ("segmentation" in obj):
|
152 |
+
continue
|
153 |
+
# DP segmentation: torch.Tensor [S, S] of float32, S=256
|
154 |
+
segm_dp = torch.zeros_like(obj["densepose"].segm)
|
155 |
+
segm_dp[obj["densepose"].segm > 0] = 1
|
156 |
+
segm_h, segm_w = segm_dp.shape
|
157 |
+
bbox_segm_dp = torch.tensor((0, 0, segm_h - 1, segm_w - 1), dtype=torch.float32)
|
158 |
+
# image bbox
|
159 |
+
x0, y0, x1, y1 = (
|
160 |
+
v.item() for v in BoxMode.convert(obj["bbox"], obj["bbox_mode"], BoxMode.XYXY_ABS)
|
161 |
+
)
|
162 |
+
segm_aligned = (
|
163 |
+
ROIAlign((y1 - y0, x1 - x0), 1.0, 0, aligned=True)
|
164 |
+
.forward(segm_dp.view(1, 1, *segm_dp.shape), bbox_segm_dp)
|
165 |
+
.squeeze()
|
166 |
+
)
|
167 |
+
image_mask = torch.zeros(*image_shape_hw, dtype=torch.float32)
|
168 |
+
image_mask[y0:y1, x0:x1] = segm_aligned
|
169 |
+
# segmentation for BitMask: np.array [H, W] of bool
|
170 |
+
obj["segmentation"] = image_mask >= 0.5
|
densepose/data/datasets/__init__.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# pyre-unsafe
|
4 |
+
|
5 |
+
from . import builtin # ensure the builtin datasets are registered
|
6 |
+
|
7 |
+
__all__ = [k for k in globals().keys() if "builtin" not in k and not k.startswith("_")]
|
densepose/data/datasets/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (384 Bytes). View file
|
|
densepose/data/datasets/__pycache__/builtin.cpython-39.pyc
ADDED
Binary file (575 Bytes). View file
|
|
densepose/data/datasets/__pycache__/chimpnsee.cpython-39.pyc
ADDED
Binary file (1.03 kB). View file
|
|
densepose/data/datasets/__pycache__/coco.cpython-39.pyc
ADDED
Binary file (11.7 kB). View file
|
|
densepose/data/datasets/__pycache__/dataset_type.cpython-39.pyc
ADDED
Binary file (499 Bytes). View file
|
|
densepose/data/datasets/__pycache__/lvis.cpython-39.pyc
ADDED
Binary file (7.83 kB). View file
|
|
densepose/data/datasets/builtin.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# pyre-unsafe
|
4 |
+
from .chimpnsee import register_dataset as register_chimpnsee_dataset
|
5 |
+
from .coco import BASE_DATASETS as BASE_COCO_DATASETS
|
6 |
+
from .coco import DATASETS as COCO_DATASETS
|
7 |
+
from .coco import register_datasets as register_coco_datasets
|
8 |
+
from .lvis import DATASETS as LVIS_DATASETS
|
9 |
+
from .lvis import register_datasets as register_lvis_datasets
|
10 |
+
|
11 |
+
DEFAULT_DATASETS_ROOT = "datasets"
|
12 |
+
|
13 |
+
|
14 |
+
register_coco_datasets(COCO_DATASETS, DEFAULT_DATASETS_ROOT)
|
15 |
+
register_coco_datasets(BASE_COCO_DATASETS, DEFAULT_DATASETS_ROOT)
|
16 |
+
register_lvis_datasets(LVIS_DATASETS, DEFAULT_DATASETS_ROOT)
|
17 |
+
|
18 |
+
register_chimpnsee_dataset(DEFAULT_DATASETS_ROOT) # pyre-ignore[19]
|
densepose/data/datasets/chimpnsee.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# pyre-unsafe
|
4 |
+
|
5 |
+
from typing import Optional
|
6 |
+
|
7 |
+
from detectron2.data import DatasetCatalog, MetadataCatalog
|
8 |
+
|
9 |
+
from ..utils import maybe_prepend_base_path
|
10 |
+
from .dataset_type import DatasetType
|
11 |
+
|
12 |
+
CHIMPNSEE_DATASET_NAME = "chimpnsee"
|
13 |
+
|
14 |
+
|
15 |
+
def register_dataset(datasets_root: Optional[str] = None) -> None:
|
16 |
+
def empty_load_callback():
|
17 |
+
pass
|
18 |
+
|
19 |
+
video_list_fpath = maybe_prepend_base_path(
|
20 |
+
datasets_root,
|
21 |
+
"chimpnsee/cdna.eva.mpg.de/video_list.txt",
|
22 |
+
)
|
23 |
+
video_base_path = maybe_prepend_base_path(datasets_root, "chimpnsee/cdna.eva.mpg.de")
|
24 |
+
|
25 |
+
DatasetCatalog.register(CHIMPNSEE_DATASET_NAME, empty_load_callback)
|
26 |
+
MetadataCatalog.get(CHIMPNSEE_DATASET_NAME).set(
|
27 |
+
dataset_type=DatasetType.VIDEO_LIST,
|
28 |
+
video_list_fpath=video_list_fpath,
|
29 |
+
video_base_path=video_base_path,
|
30 |
+
category="chimpanzee",
|
31 |
+
)
|
densepose/data/datasets/coco.py
ADDED
@@ -0,0 +1,434 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# pyre-unsafe
|
4 |
+
import contextlib
|
5 |
+
import io
|
6 |
+
import logging
|
7 |
+
import os
|
8 |
+
from collections import defaultdict
|
9 |
+
from dataclasses import dataclass
|
10 |
+
from typing import Any, Dict, Iterable, List, Optional
|
11 |
+
from fvcore.common.timer import Timer
|
12 |
+
|
13 |
+
from detectron2.data import DatasetCatalog, MetadataCatalog
|
14 |
+
from detectron2.structures import BoxMode
|
15 |
+
from detectron2.utils.file_io import PathManager
|
16 |
+
|
17 |
+
from ..utils import maybe_prepend_base_path
|
18 |
+
|
19 |
+
DENSEPOSE_MASK_KEY = "dp_masks"
|
20 |
+
DENSEPOSE_IUV_KEYS_WITHOUT_MASK = ["dp_x", "dp_y", "dp_I", "dp_U", "dp_V"]
|
21 |
+
DENSEPOSE_CSE_KEYS_WITHOUT_MASK = ["dp_x", "dp_y", "dp_vertex", "ref_model"]
|
22 |
+
DENSEPOSE_ALL_POSSIBLE_KEYS = set(
|
23 |
+
DENSEPOSE_IUV_KEYS_WITHOUT_MASK + DENSEPOSE_CSE_KEYS_WITHOUT_MASK + [DENSEPOSE_MASK_KEY]
|
24 |
+
)
|
25 |
+
DENSEPOSE_METADATA_URL_PREFIX = "https://dl.fbaipublicfiles.com/densepose/data/"
|
26 |
+
|
27 |
+
|
28 |
+
@dataclass
|
29 |
+
class CocoDatasetInfo:
|
30 |
+
name: str
|
31 |
+
images_root: str
|
32 |
+
annotations_fpath: str
|
33 |
+
|
34 |
+
|
35 |
+
DATASETS = [
|
36 |
+
CocoDatasetInfo(
|
37 |
+
name="densepose_coco_2014_train",
|
38 |
+
images_root="coco/train2014",
|
39 |
+
annotations_fpath="coco/annotations/densepose_train2014.json",
|
40 |
+
),
|
41 |
+
CocoDatasetInfo(
|
42 |
+
name="densepose_coco_2014_minival",
|
43 |
+
images_root="coco/val2014",
|
44 |
+
annotations_fpath="coco/annotations/densepose_minival2014.json",
|
45 |
+
),
|
46 |
+
CocoDatasetInfo(
|
47 |
+
name="densepose_coco_2014_minival_100",
|
48 |
+
images_root="coco/val2014",
|
49 |
+
annotations_fpath="coco/annotations/densepose_minival2014_100.json",
|
50 |
+
),
|
51 |
+
CocoDatasetInfo(
|
52 |
+
name="densepose_coco_2014_valminusminival",
|
53 |
+
images_root="coco/val2014",
|
54 |
+
annotations_fpath="coco/annotations/densepose_valminusminival2014.json",
|
55 |
+
),
|
56 |
+
CocoDatasetInfo(
|
57 |
+
name="densepose_coco_2014_train_cse",
|
58 |
+
images_root="coco/train2014",
|
59 |
+
annotations_fpath="coco_cse/densepose_train2014_cse.json",
|
60 |
+
),
|
61 |
+
CocoDatasetInfo(
|
62 |
+
name="densepose_coco_2014_minival_cse",
|
63 |
+
images_root="coco/val2014",
|
64 |
+
annotations_fpath="coco_cse/densepose_minival2014_cse.json",
|
65 |
+
),
|
66 |
+
CocoDatasetInfo(
|
67 |
+
name="densepose_coco_2014_minival_100_cse",
|
68 |
+
images_root="coco/val2014",
|
69 |
+
annotations_fpath="coco_cse/densepose_minival2014_100_cse.json",
|
70 |
+
),
|
71 |
+
CocoDatasetInfo(
|
72 |
+
name="densepose_coco_2014_valminusminival_cse",
|
73 |
+
images_root="coco/val2014",
|
74 |
+
annotations_fpath="coco_cse/densepose_valminusminival2014_cse.json",
|
75 |
+
),
|
76 |
+
CocoDatasetInfo(
|
77 |
+
name="densepose_chimps",
|
78 |
+
images_root="densepose_chimps/images",
|
79 |
+
annotations_fpath="densepose_chimps/densepose_chimps_densepose.json",
|
80 |
+
),
|
81 |
+
CocoDatasetInfo(
|
82 |
+
name="densepose_chimps_cse_train",
|
83 |
+
images_root="densepose_chimps/images",
|
84 |
+
annotations_fpath="densepose_chimps/densepose_chimps_cse_train.json",
|
85 |
+
),
|
86 |
+
CocoDatasetInfo(
|
87 |
+
name="densepose_chimps_cse_val",
|
88 |
+
images_root="densepose_chimps/images",
|
89 |
+
annotations_fpath="densepose_chimps/densepose_chimps_cse_val.json",
|
90 |
+
),
|
91 |
+
CocoDatasetInfo(
|
92 |
+
name="posetrack2017_train",
|
93 |
+
images_root="posetrack2017/posetrack_data_2017",
|
94 |
+
annotations_fpath="posetrack2017/densepose_posetrack_train2017.json",
|
95 |
+
),
|
96 |
+
CocoDatasetInfo(
|
97 |
+
name="posetrack2017_val",
|
98 |
+
images_root="posetrack2017/posetrack_data_2017",
|
99 |
+
annotations_fpath="posetrack2017/densepose_posetrack_val2017.json",
|
100 |
+
),
|
101 |
+
CocoDatasetInfo(
|
102 |
+
name="lvis_v05_train",
|
103 |
+
images_root="coco/train2017",
|
104 |
+
annotations_fpath="lvis/lvis_v0.5_plus_dp_train.json",
|
105 |
+
),
|
106 |
+
CocoDatasetInfo(
|
107 |
+
name="lvis_v05_val",
|
108 |
+
images_root="coco/val2017",
|
109 |
+
annotations_fpath="lvis/lvis_v0.5_plus_dp_val.json",
|
110 |
+
),
|
111 |
+
]
|
112 |
+
|
113 |
+
|
114 |
+
BASE_DATASETS = [
|
115 |
+
CocoDatasetInfo(
|
116 |
+
name="base_coco_2017_train",
|
117 |
+
images_root="coco/train2017",
|
118 |
+
annotations_fpath="coco/annotations/instances_train2017.json",
|
119 |
+
),
|
120 |
+
CocoDatasetInfo(
|
121 |
+
name="base_coco_2017_val",
|
122 |
+
images_root="coco/val2017",
|
123 |
+
annotations_fpath="coco/annotations/instances_val2017.json",
|
124 |
+
),
|
125 |
+
CocoDatasetInfo(
|
126 |
+
name="base_coco_2017_val_100",
|
127 |
+
images_root="coco/val2017",
|
128 |
+
annotations_fpath="coco/annotations/instances_val2017_100.json",
|
129 |
+
),
|
130 |
+
]
|
131 |
+
|
132 |
+
|
133 |
+
def get_metadata(base_path: Optional[str]) -> Dict[str, Any]:
|
134 |
+
"""
|
135 |
+
Returns metadata associated with COCO DensePose datasets
|
136 |
+
|
137 |
+
Args:
|
138 |
+
base_path: Optional[str]
|
139 |
+
Base path used to load metadata from
|
140 |
+
|
141 |
+
Returns:
|
142 |
+
Dict[str, Any]
|
143 |
+
Metadata in the form of a dictionary
|
144 |
+
"""
|
145 |
+
meta = {
|
146 |
+
"densepose_transform_src": maybe_prepend_base_path(base_path, "UV_symmetry_transforms.mat"),
|
147 |
+
"densepose_smpl_subdiv": maybe_prepend_base_path(base_path, "SMPL_subdiv.mat"),
|
148 |
+
"densepose_smpl_subdiv_transform": maybe_prepend_base_path(
|
149 |
+
base_path,
|
150 |
+
"SMPL_SUBDIV_TRANSFORM.mat",
|
151 |
+
),
|
152 |
+
}
|
153 |
+
return meta
|
154 |
+
|
155 |
+
|
156 |
+
def _load_coco_annotations(json_file: str):
|
157 |
+
"""
|
158 |
+
Load COCO annotations from a JSON file
|
159 |
+
|
160 |
+
Args:
|
161 |
+
json_file: str
|
162 |
+
Path to the file to load annotations from
|
163 |
+
Returns:
|
164 |
+
Instance of `pycocotools.coco.COCO` that provides access to annotations
|
165 |
+
data
|
166 |
+
"""
|
167 |
+
from pycocotools.coco import COCO
|
168 |
+
|
169 |
+
logger = logging.getLogger(__name__)
|
170 |
+
timer = Timer()
|
171 |
+
with contextlib.redirect_stdout(io.StringIO()):
|
172 |
+
coco_api = COCO(json_file)
|
173 |
+
if timer.seconds() > 1:
|
174 |
+
logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()))
|
175 |
+
return coco_api
|
176 |
+
|
177 |
+
|
178 |
+
def _add_categories_metadata(dataset_name: str, categories: List[Dict[str, Any]]):
|
179 |
+
meta = MetadataCatalog.get(dataset_name)
|
180 |
+
meta.categories = {c["id"]: c["name"] for c in categories}
|
181 |
+
logger = logging.getLogger(__name__)
|
182 |
+
logger.info("Dataset {} categories: {}".format(dataset_name, meta.categories))
|
183 |
+
|
184 |
+
|
185 |
+
def _verify_annotations_have_unique_ids(json_file: str, anns: List[List[Dict[str, Any]]]):
|
186 |
+
if "minival" in json_file:
|
187 |
+
# Skip validation on COCO2014 valminusminival and minival annotations
|
188 |
+
# The ratio of buggy annotations there is tiny and does not affect accuracy
|
189 |
+
# Therefore we explicitly white-list them
|
190 |
+
return
|
191 |
+
ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image]
|
192 |
+
assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique!".format(
|
193 |
+
json_file
|
194 |
+
)
|
195 |
+
|
196 |
+
|
197 |
+
def _maybe_add_bbox(obj: Dict[str, Any], ann_dict: Dict[str, Any]):
|
198 |
+
if "bbox" not in ann_dict:
|
199 |
+
return
|
200 |
+
obj["bbox"] = ann_dict["bbox"]
|
201 |
+
obj["bbox_mode"] = BoxMode.XYWH_ABS
|
202 |
+
|
203 |
+
|
204 |
+
def _maybe_add_segm(obj: Dict[str, Any], ann_dict: Dict[str, Any]):
|
205 |
+
if "segmentation" not in ann_dict:
|
206 |
+
return
|
207 |
+
segm = ann_dict["segmentation"]
|
208 |
+
if not isinstance(segm, dict):
|
209 |
+
# filter out invalid polygons (< 3 points)
|
210 |
+
segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
|
211 |
+
if len(segm) == 0:
|
212 |
+
return
|
213 |
+
obj["segmentation"] = segm
|
214 |
+
|
215 |
+
|
216 |
+
def _maybe_add_keypoints(obj: Dict[str, Any], ann_dict: Dict[str, Any]):
|
217 |
+
if "keypoints" not in ann_dict:
|
218 |
+
return
|
219 |
+
keypts = ann_dict["keypoints"] # list[int]
|
220 |
+
for idx, v in enumerate(keypts):
|
221 |
+
if idx % 3 != 2:
|
222 |
+
# COCO's segmentation coordinates are floating points in [0, H or W],
|
223 |
+
# but keypoint coordinates are integers in [0, H-1 or W-1]
|
224 |
+
# Therefore we assume the coordinates are "pixel indices" and
|
225 |
+
# add 0.5 to convert to floating point coordinates.
|
226 |
+
keypts[idx] = v + 0.5
|
227 |
+
obj["keypoints"] = keypts
|
228 |
+
|
229 |
+
|
230 |
+
def _maybe_add_densepose(obj: Dict[str, Any], ann_dict: Dict[str, Any]):
|
231 |
+
for key in DENSEPOSE_ALL_POSSIBLE_KEYS:
|
232 |
+
if key in ann_dict:
|
233 |
+
obj[key] = ann_dict[key]
|
234 |
+
|
235 |
+
|
236 |
+
def _combine_images_with_annotations(
|
237 |
+
dataset_name: str,
|
238 |
+
image_root: str,
|
239 |
+
img_datas: Iterable[Dict[str, Any]],
|
240 |
+
ann_datas: Iterable[Iterable[Dict[str, Any]]],
|
241 |
+
):
|
242 |
+
|
243 |
+
ann_keys = ["iscrowd", "category_id"]
|
244 |
+
dataset_dicts = []
|
245 |
+
contains_video_frame_info = False
|
246 |
+
|
247 |
+
for img_dict, ann_dicts in zip(img_datas, ann_datas):
|
248 |
+
record = {}
|
249 |
+
record["file_name"] = os.path.join(image_root, img_dict["file_name"])
|
250 |
+
record["height"] = img_dict["height"]
|
251 |
+
record["width"] = img_dict["width"]
|
252 |
+
record["image_id"] = img_dict["id"]
|
253 |
+
record["dataset"] = dataset_name
|
254 |
+
if "frame_id" in img_dict:
|
255 |
+
record["frame_id"] = img_dict["frame_id"]
|
256 |
+
record["video_id"] = img_dict.get("vid_id", None)
|
257 |
+
contains_video_frame_info = True
|
258 |
+
objs = []
|
259 |
+
for ann_dict in ann_dicts:
|
260 |
+
assert ann_dict["image_id"] == record["image_id"]
|
261 |
+
assert ann_dict.get("ignore", 0) == 0
|
262 |
+
obj = {key: ann_dict[key] for key in ann_keys if key in ann_dict}
|
263 |
+
_maybe_add_bbox(obj, ann_dict)
|
264 |
+
_maybe_add_segm(obj, ann_dict)
|
265 |
+
_maybe_add_keypoints(obj, ann_dict)
|
266 |
+
_maybe_add_densepose(obj, ann_dict)
|
267 |
+
objs.append(obj)
|
268 |
+
record["annotations"] = objs
|
269 |
+
dataset_dicts.append(record)
|
270 |
+
if contains_video_frame_info:
|
271 |
+
create_video_frame_mapping(dataset_name, dataset_dicts)
|
272 |
+
return dataset_dicts
|
273 |
+
|
274 |
+
|
275 |
+
def get_contiguous_id_to_category_id_map(metadata):
|
276 |
+
cat_id_2_cont_id = metadata.thing_dataset_id_to_contiguous_id
|
277 |
+
cont_id_2_cat_id = {}
|
278 |
+
for cat_id, cont_id in cat_id_2_cont_id.items():
|
279 |
+
if cont_id in cont_id_2_cat_id:
|
280 |
+
continue
|
281 |
+
cont_id_2_cat_id[cont_id] = cat_id
|
282 |
+
return cont_id_2_cat_id
|
283 |
+
|
284 |
+
|
285 |
+
def maybe_filter_categories_cocoapi(dataset_name, coco_api):
|
286 |
+
meta = MetadataCatalog.get(dataset_name)
|
287 |
+
cont_id_2_cat_id = get_contiguous_id_to_category_id_map(meta)
|
288 |
+
cat_id_2_cont_id = meta.thing_dataset_id_to_contiguous_id
|
289 |
+
# filter categories
|
290 |
+
cats = []
|
291 |
+
for cat in coco_api.dataset["categories"]:
|
292 |
+
cat_id = cat["id"]
|
293 |
+
if cat_id not in cat_id_2_cont_id:
|
294 |
+
continue
|
295 |
+
cont_id = cat_id_2_cont_id[cat_id]
|
296 |
+
if (cont_id in cont_id_2_cat_id) and (cont_id_2_cat_id[cont_id] == cat_id):
|
297 |
+
cats.append(cat)
|
298 |
+
coco_api.dataset["categories"] = cats
|
299 |
+
# filter annotations, if multiple categories are mapped to a single
|
300 |
+
# contiguous ID, use only one category ID and map all annotations to that category ID
|
301 |
+
anns = []
|
302 |
+
for ann in coco_api.dataset["annotations"]:
|
303 |
+
cat_id = ann["category_id"]
|
304 |
+
if cat_id not in cat_id_2_cont_id:
|
305 |
+
continue
|
306 |
+
cont_id = cat_id_2_cont_id[cat_id]
|
307 |
+
ann["category_id"] = cont_id_2_cat_id[cont_id]
|
308 |
+
anns.append(ann)
|
309 |
+
coco_api.dataset["annotations"] = anns
|
310 |
+
# recreate index
|
311 |
+
coco_api.createIndex()
|
312 |
+
|
313 |
+
|
314 |
+
def maybe_filter_and_map_categories_cocoapi(dataset_name, coco_api):
|
315 |
+
meta = MetadataCatalog.get(dataset_name)
|
316 |
+
category_id_map = meta.thing_dataset_id_to_contiguous_id
|
317 |
+
# map categories
|
318 |
+
cats = []
|
319 |
+
for cat in coco_api.dataset["categories"]:
|
320 |
+
cat_id = cat["id"]
|
321 |
+
if cat_id not in category_id_map:
|
322 |
+
continue
|
323 |
+
cat["id"] = category_id_map[cat_id]
|
324 |
+
cats.append(cat)
|
325 |
+
coco_api.dataset["categories"] = cats
|
326 |
+
# map annotation categories
|
327 |
+
anns = []
|
328 |
+
for ann in coco_api.dataset["annotations"]:
|
329 |
+
cat_id = ann["category_id"]
|
330 |
+
if cat_id not in category_id_map:
|
331 |
+
continue
|
332 |
+
ann["category_id"] = category_id_map[cat_id]
|
333 |
+
anns.append(ann)
|
334 |
+
coco_api.dataset["annotations"] = anns
|
335 |
+
# recreate index
|
336 |
+
coco_api.createIndex()
|
337 |
+
|
338 |
+
|
339 |
+
def create_video_frame_mapping(dataset_name, dataset_dicts):
|
340 |
+
mapping = defaultdict(dict)
|
341 |
+
for d in dataset_dicts:
|
342 |
+
video_id = d.get("video_id")
|
343 |
+
if video_id is None:
|
344 |
+
continue
|
345 |
+
mapping[video_id].update({d["frame_id"]: d["file_name"]})
|
346 |
+
MetadataCatalog.get(dataset_name).set(video_frame_mapping=mapping)
|
347 |
+
|
348 |
+
|
349 |
+
def load_coco_json(annotations_json_file: str, image_root: str, dataset_name: str):
|
350 |
+
"""
|
351 |
+
Loads a JSON file with annotations in COCO instances format.
|
352 |
+
Replaces `detectron2.data.datasets.coco.load_coco_json` to handle metadata
|
353 |
+
in a more flexible way. Postpones category mapping to a later stage to be
|
354 |
+
able to combine several datasets with different (but coherent) sets of
|
355 |
+
categories.
|
356 |
+
|
357 |
+
Args:
|
358 |
+
|
359 |
+
annotations_json_file: str
|
360 |
+
Path to the JSON file with annotations in COCO instances format.
|
361 |
+
image_root: str
|
362 |
+
directory that contains all the images
|
363 |
+
dataset_name: str
|
364 |
+
the name that identifies a dataset, e.g. "densepose_coco_2014_train"
|
365 |
+
extra_annotation_keys: Optional[List[str]]
|
366 |
+
If provided, these keys are used to extract additional data from
|
367 |
+
the annotations.
|
368 |
+
"""
|
369 |
+
coco_api = _load_coco_annotations(PathManager.get_local_path(annotations_json_file))
|
370 |
+
_add_categories_metadata(dataset_name, coco_api.loadCats(coco_api.getCatIds()))
|
371 |
+
# sort indices for reproducible results
|
372 |
+
img_ids = sorted(coco_api.imgs.keys())
|
373 |
+
# imgs is a list of dicts, each looks something like:
|
374 |
+
# {'license': 4,
|
375 |
+
# 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg',
|
376 |
+
# 'file_name': 'COCO_val2014_000000001268.jpg',
|
377 |
+
# 'height': 427,
|
378 |
+
# 'width': 640,
|
379 |
+
# 'date_captured': '2013-11-17 05:57:24',
|
380 |
+
# 'id': 1268}
|
381 |
+
imgs = coco_api.loadImgs(img_ids)
|
382 |
+
logger = logging.getLogger(__name__)
|
383 |
+
logger.info("Loaded {} images in COCO format from {}".format(len(imgs), annotations_json_file))
|
384 |
+
# anns is a list[list[dict]], where each dict is an annotation
|
385 |
+
# record for an object. The inner list enumerates the objects in an image
|
386 |
+
# and the outer list enumerates over images.
|
387 |
+
anns = [coco_api.imgToAnns[img_id] for img_id in img_ids]
|
388 |
+
_verify_annotations_have_unique_ids(annotations_json_file, anns)
|
389 |
+
dataset_records = _combine_images_with_annotations(dataset_name, image_root, imgs, anns)
|
390 |
+
return dataset_records
|
391 |
+
|
392 |
+
|
393 |
+
def register_dataset(dataset_data: CocoDatasetInfo, datasets_root: Optional[str] = None):
|
394 |
+
"""
|
395 |
+
Registers provided COCO DensePose dataset
|
396 |
+
|
397 |
+
Args:
|
398 |
+
dataset_data: CocoDatasetInfo
|
399 |
+
Dataset data
|
400 |
+
datasets_root: Optional[str]
|
401 |
+
Datasets root folder (default: None)
|
402 |
+
"""
|
403 |
+
annotations_fpath = maybe_prepend_base_path(datasets_root, dataset_data.annotations_fpath)
|
404 |
+
images_root = maybe_prepend_base_path(datasets_root, dataset_data.images_root)
|
405 |
+
|
406 |
+
def load_annotations():
|
407 |
+
return load_coco_json(
|
408 |
+
annotations_json_file=annotations_fpath,
|
409 |
+
image_root=images_root,
|
410 |
+
dataset_name=dataset_data.name,
|
411 |
+
)
|
412 |
+
|
413 |
+
DatasetCatalog.register(dataset_data.name, load_annotations)
|
414 |
+
MetadataCatalog.get(dataset_data.name).set(
|
415 |
+
json_file=annotations_fpath,
|
416 |
+
image_root=images_root,
|
417 |
+
**get_metadata(DENSEPOSE_METADATA_URL_PREFIX)
|
418 |
+
)
|
419 |
+
|
420 |
+
|
421 |
+
def register_datasets(
|
422 |
+
datasets_data: Iterable[CocoDatasetInfo], datasets_root: Optional[str] = None
|
423 |
+
):
|
424 |
+
"""
|
425 |
+
Registers provided COCO DensePose datasets
|
426 |
+
|
427 |
+
Args:
|
428 |
+
datasets_data: Iterable[CocoDatasetInfo]
|
429 |
+
An iterable of dataset datas
|
430 |
+
datasets_root: Optional[str]
|
431 |
+
Datasets root folder (default: None)
|
432 |
+
"""
|
433 |
+
for dataset_data in datasets_data:
|
434 |
+
register_dataset(dataset_data, datasets_root)
|
densepose/data/datasets/dataset_type.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# pyre-unsafe
|
4 |
+
|
5 |
+
from enum import Enum
|
6 |
+
|
7 |
+
|
8 |
+
class DatasetType(Enum):
|
9 |
+
"""
|
10 |
+
Dataset type, mostly used for datasets that contain data to bootstrap models on
|
11 |
+
"""
|
12 |
+
|
13 |
+
VIDEO_LIST = "video_list"
|
densepose/data/datasets/lvis.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# pyre-unsafe
|
4 |
+
import logging
|
5 |
+
import os
|
6 |
+
from typing import Any, Dict, Iterable, List, Optional
|
7 |
+
from fvcore.common.timer import Timer
|
8 |
+
|
9 |
+
from detectron2.data import DatasetCatalog, MetadataCatalog
|
10 |
+
from detectron2.data.datasets.lvis import get_lvis_instances_meta
|
11 |
+
from detectron2.structures import BoxMode
|
12 |
+
from detectron2.utils.file_io import PathManager
|
13 |
+
|
14 |
+
from ..utils import maybe_prepend_base_path
|
15 |
+
from .coco import (
|
16 |
+
DENSEPOSE_ALL_POSSIBLE_KEYS,
|
17 |
+
DENSEPOSE_METADATA_URL_PREFIX,
|
18 |
+
CocoDatasetInfo,
|
19 |
+
get_metadata,
|
20 |
+
)
|
21 |
+
|
22 |
+
DATASETS = [
|
23 |
+
CocoDatasetInfo(
|
24 |
+
name="densepose_lvis_v1_ds1_train_v1",
|
25 |
+
images_root="coco_",
|
26 |
+
annotations_fpath="lvis/densepose_lvis_v1_ds1_train_v1.json",
|
27 |
+
),
|
28 |
+
CocoDatasetInfo(
|
29 |
+
name="densepose_lvis_v1_ds1_val_v1",
|
30 |
+
images_root="coco_",
|
31 |
+
annotations_fpath="lvis/densepose_lvis_v1_ds1_val_v1.json",
|
32 |
+
),
|
33 |
+
CocoDatasetInfo(
|
34 |
+
name="densepose_lvis_v1_ds2_train_v1",
|
35 |
+
images_root="coco_",
|
36 |
+
annotations_fpath="lvis/densepose_lvis_v1_ds2_train_v1.json",
|
37 |
+
),
|
38 |
+
CocoDatasetInfo(
|
39 |
+
name="densepose_lvis_v1_ds2_val_v1",
|
40 |
+
images_root="coco_",
|
41 |
+
annotations_fpath="lvis/densepose_lvis_v1_ds2_val_v1.json",
|
42 |
+
),
|
43 |
+
CocoDatasetInfo(
|
44 |
+
name="densepose_lvis_v1_ds1_val_animals_100",
|
45 |
+
images_root="coco_",
|
46 |
+
annotations_fpath="lvis/densepose_lvis_v1_val_animals_100_v2.json",
|
47 |
+
),
|
48 |
+
]
|
49 |
+
|
50 |
+
|
51 |
+
def _load_lvis_annotations(json_file: str):
|
52 |
+
"""
|
53 |
+
Load COCO annotations from a JSON file
|
54 |
+
|
55 |
+
Args:
|
56 |
+
json_file: str
|
57 |
+
Path to the file to load annotations from
|
58 |
+
Returns:
|
59 |
+
Instance of `pycocotools.coco.COCO` that provides access to annotations
|
60 |
+
data
|
61 |
+
"""
|
62 |
+
from lvis import LVIS
|
63 |
+
|
64 |
+
json_file = PathManager.get_local_path(json_file)
|
65 |
+
logger = logging.getLogger(__name__)
|
66 |
+
timer = Timer()
|
67 |
+
lvis_api = LVIS(json_file)
|
68 |
+
if timer.seconds() > 1:
|
69 |
+
logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()))
|
70 |
+
return lvis_api
|
71 |
+
|
72 |
+
|
73 |
+
def _add_categories_metadata(dataset_name: str) -> None:
|
74 |
+
metadict = get_lvis_instances_meta(dataset_name)
|
75 |
+
categories = metadict["thing_classes"]
|
76 |
+
metadata = MetadataCatalog.get(dataset_name)
|
77 |
+
metadata.categories = {i + 1: categories[i] for i in range(len(categories))}
|
78 |
+
logger = logging.getLogger(__name__)
|
79 |
+
logger.info(f"Dataset {dataset_name} has {len(categories)} categories")
|
80 |
+
|
81 |
+
|
82 |
+
def _verify_annotations_have_unique_ids(json_file: str, anns: List[List[Dict[str, Any]]]) -> None:
|
83 |
+
ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image]
|
84 |
+
assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique!".format(
|
85 |
+
json_file
|
86 |
+
)
|
87 |
+
|
88 |
+
|
89 |
+
def _maybe_add_bbox(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None:
|
90 |
+
if "bbox" not in ann_dict:
|
91 |
+
return
|
92 |
+
obj["bbox"] = ann_dict["bbox"]
|
93 |
+
obj["bbox_mode"] = BoxMode.XYWH_ABS
|
94 |
+
|
95 |
+
|
96 |
+
def _maybe_add_segm(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None:
|
97 |
+
if "segmentation" not in ann_dict:
|
98 |
+
return
|
99 |
+
segm = ann_dict["segmentation"]
|
100 |
+
if not isinstance(segm, dict):
|
101 |
+
# filter out invalid polygons (< 3 points)
|
102 |
+
segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
|
103 |
+
if len(segm) == 0:
|
104 |
+
return
|
105 |
+
obj["segmentation"] = segm
|
106 |
+
|
107 |
+
|
108 |
+
def _maybe_add_keypoints(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None:
|
109 |
+
if "keypoints" not in ann_dict:
|
110 |
+
return
|
111 |
+
keypts = ann_dict["keypoints"] # list[int]
|
112 |
+
for idx, v in enumerate(keypts):
|
113 |
+
if idx % 3 != 2:
|
114 |
+
# COCO's segmentation coordinates are floating points in [0, H or W],
|
115 |
+
# but keypoint coordinates are integers in [0, H-1 or W-1]
|
116 |
+
# Therefore we assume the coordinates are "pixel indices" and
|
117 |
+
# add 0.5 to convert to floating point coordinates.
|
118 |
+
keypts[idx] = v + 0.5
|
119 |
+
obj["keypoints"] = keypts
|
120 |
+
|
121 |
+
|
122 |
+
def _maybe_add_densepose(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None:
|
123 |
+
for key in DENSEPOSE_ALL_POSSIBLE_KEYS:
|
124 |
+
if key in ann_dict:
|
125 |
+
obj[key] = ann_dict[key]
|
126 |
+
|
127 |
+
|
128 |
+
def _combine_images_with_annotations(
|
129 |
+
dataset_name: str,
|
130 |
+
image_root: str,
|
131 |
+
img_datas: Iterable[Dict[str, Any]],
|
132 |
+
ann_datas: Iterable[Iterable[Dict[str, Any]]],
|
133 |
+
):
|
134 |
+
|
135 |
+
dataset_dicts = []
|
136 |
+
|
137 |
+
def get_file_name(img_root, img_dict):
|
138 |
+
# Determine the path including the split folder ("train2017", "val2017", "test2017") from
|
139 |
+
# the coco_url field. Example:
|
140 |
+
# 'coco_url': 'http://images.cocodataset.org/train2017/000000155379.jpg'
|
141 |
+
split_folder, file_name = img_dict["coco_url"].split("/")[-2:]
|
142 |
+
return os.path.join(img_root + split_folder, file_name)
|
143 |
+
|
144 |
+
for img_dict, ann_dicts in zip(img_datas, ann_datas):
|
145 |
+
record = {}
|
146 |
+
record["file_name"] = get_file_name(image_root, img_dict)
|
147 |
+
record["height"] = img_dict["height"]
|
148 |
+
record["width"] = img_dict["width"]
|
149 |
+
record["not_exhaustive_category_ids"] = img_dict.get("not_exhaustive_category_ids", [])
|
150 |
+
record["neg_category_ids"] = img_dict.get("neg_category_ids", [])
|
151 |
+
record["image_id"] = img_dict["id"]
|
152 |
+
record["dataset"] = dataset_name
|
153 |
+
|
154 |
+
objs = []
|
155 |
+
for ann_dict in ann_dicts:
|
156 |
+
assert ann_dict["image_id"] == record["image_id"]
|
157 |
+
obj = {}
|
158 |
+
_maybe_add_bbox(obj, ann_dict)
|
159 |
+
obj["iscrowd"] = ann_dict.get("iscrowd", 0)
|
160 |
+
obj["category_id"] = ann_dict["category_id"]
|
161 |
+
_maybe_add_segm(obj, ann_dict)
|
162 |
+
_maybe_add_keypoints(obj, ann_dict)
|
163 |
+
_maybe_add_densepose(obj, ann_dict)
|
164 |
+
objs.append(obj)
|
165 |
+
record["annotations"] = objs
|
166 |
+
dataset_dicts.append(record)
|
167 |
+
return dataset_dicts
|
168 |
+
|
169 |
+
|
170 |
+
def load_lvis_json(annotations_json_file: str, image_root: str, dataset_name: str):
|
171 |
+
"""
|
172 |
+
Loads a JSON file with annotations in LVIS instances format.
|
173 |
+
Replaces `detectron2.data.datasets.coco.load_lvis_json` to handle metadata
|
174 |
+
in a more flexible way. Postpones category mapping to a later stage to be
|
175 |
+
able to combine several datasets with different (but coherent) sets of
|
176 |
+
categories.
|
177 |
+
|
178 |
+
Args:
|
179 |
+
|
180 |
+
annotations_json_file: str
|
181 |
+
Path to the JSON file with annotations in COCO instances format.
|
182 |
+
image_root: str
|
183 |
+
directory that contains all the images
|
184 |
+
dataset_name: str
|
185 |
+
the name that identifies a dataset, e.g. "densepose_coco_2014_train"
|
186 |
+
extra_annotation_keys: Optional[List[str]]
|
187 |
+
If provided, these keys are used to extract additional data from
|
188 |
+
the annotations.
|
189 |
+
"""
|
190 |
+
lvis_api = _load_lvis_annotations(PathManager.get_local_path(annotations_json_file))
|
191 |
+
|
192 |
+
_add_categories_metadata(dataset_name)
|
193 |
+
|
194 |
+
# sort indices for reproducible results
|
195 |
+
img_ids = sorted(lvis_api.imgs.keys())
|
196 |
+
# imgs is a list of dicts, each looks something like:
|
197 |
+
# {'license': 4,
|
198 |
+
# 'url': 'http://farm6.staticflickr.com/5454/9413846304_881d5e5c3b_z.jpg',
|
199 |
+
# 'file_name': 'COCO_val2014_000000001268.jpg',
|
200 |
+
# 'height': 427,
|
201 |
+
# 'width': 640,
|
202 |
+
# 'date_captured': '2013-11-17 05:57:24',
|
203 |
+
# 'id': 1268}
|
204 |
+
imgs = lvis_api.load_imgs(img_ids)
|
205 |
+
logger = logging.getLogger(__name__)
|
206 |
+
logger.info("Loaded {} images in LVIS format from {}".format(len(imgs), annotations_json_file))
|
207 |
+
# anns is a list[list[dict]], where each dict is an annotation
|
208 |
+
# record for an object. The inner list enumerates the objects in an image
|
209 |
+
# and the outer list enumerates over images.
|
210 |
+
anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids]
|
211 |
+
|
212 |
+
_verify_annotations_have_unique_ids(annotations_json_file, anns)
|
213 |
+
dataset_records = _combine_images_with_annotations(dataset_name, image_root, imgs, anns)
|
214 |
+
return dataset_records
|
215 |
+
|
216 |
+
|
217 |
+
def register_dataset(dataset_data: CocoDatasetInfo, datasets_root: Optional[str] = None) -> None:
|
218 |
+
"""
|
219 |
+
Registers provided LVIS DensePose dataset
|
220 |
+
|
221 |
+
Args:
|
222 |
+
dataset_data: CocoDatasetInfo
|
223 |
+
Dataset data
|
224 |
+
datasets_root: Optional[str]
|
225 |
+
Datasets root folder (default: None)
|
226 |
+
"""
|
227 |
+
annotations_fpath = maybe_prepend_base_path(datasets_root, dataset_data.annotations_fpath)
|
228 |
+
images_root = maybe_prepend_base_path(datasets_root, dataset_data.images_root)
|
229 |
+
|
230 |
+
def load_annotations():
|
231 |
+
return load_lvis_json(
|
232 |
+
annotations_json_file=annotations_fpath,
|
233 |
+
image_root=images_root,
|
234 |
+
dataset_name=dataset_data.name,
|
235 |
+
)
|
236 |
+
|
237 |
+
DatasetCatalog.register(dataset_data.name, load_annotations)
|
238 |
+
MetadataCatalog.get(dataset_data.name).set(
|
239 |
+
json_file=annotations_fpath,
|
240 |
+
image_root=images_root,
|
241 |
+
evaluator_type="lvis",
|
242 |
+
**get_metadata(DENSEPOSE_METADATA_URL_PREFIX),
|
243 |
+
)
|
244 |
+
|
245 |
+
|
246 |
+
def register_datasets(
|
247 |
+
datasets_data: Iterable[CocoDatasetInfo], datasets_root: Optional[str] = None
|
248 |
+
) -> None:
|
249 |
+
"""
|
250 |
+
Registers provided LVIS DensePose datasets
|
251 |
+
|
252 |
+
Args:
|
253 |
+
datasets_data: Iterable[CocoDatasetInfo]
|
254 |
+
An iterable of dataset datas
|
255 |
+
datasets_root: Optional[str]
|
256 |
+
Datasets root folder (default: None)
|
257 |
+
"""
|
258 |
+
for dataset_data in datasets_data:
|
259 |
+
register_dataset(dataset_data, datasets_root)
|
densepose/data/image_list_dataset.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
3 |
+
|
4 |
+
# pyre-unsafe
|
5 |
+
|
6 |
+
import logging
|
7 |
+
import numpy as np
|
8 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
9 |
+
import torch
|
10 |
+
from torch.utils.data.dataset import Dataset
|
11 |
+
|
12 |
+
from detectron2.data.detection_utils import read_image
|
13 |
+
|
14 |
+
ImageTransform = Callable[[torch.Tensor], torch.Tensor]
|
15 |
+
|
16 |
+
|
17 |
+
class ImageListDataset(Dataset):
|
18 |
+
"""
|
19 |
+
Dataset that provides images from a list.
|
20 |
+
"""
|
21 |
+
|
22 |
+
_EMPTY_IMAGE = torch.empty((0, 3, 1, 1))
|
23 |
+
|
24 |
+
def __init__(
|
25 |
+
self,
|
26 |
+
image_list: List[str],
|
27 |
+
category_list: Union[str, List[str], None] = None,
|
28 |
+
transform: Optional[ImageTransform] = None,
|
29 |
+
):
|
30 |
+
"""
|
31 |
+
Args:
|
32 |
+
image_list (List[str]): list of paths to image files
|
33 |
+
category_list (Union[str, List[str], None]): list of animal categories for
|
34 |
+
each image. If it is a string, or None, this applies to all images
|
35 |
+
"""
|
36 |
+
if type(category_list) is list:
|
37 |
+
self.category_list = category_list
|
38 |
+
else:
|
39 |
+
self.category_list = [category_list] * len(image_list)
|
40 |
+
assert len(image_list) == len(
|
41 |
+
self.category_list
|
42 |
+
), "length of image and category lists must be equal"
|
43 |
+
self.image_list = image_list
|
44 |
+
self.transform = transform
|
45 |
+
|
46 |
+
def __getitem__(self, idx: int) -> Dict[str, Any]:
|
47 |
+
"""
|
48 |
+
Gets selected images from the list
|
49 |
+
|
50 |
+
Args:
|
51 |
+
idx (int): video index in the video list file
|
52 |
+
Returns:
|
53 |
+
A dictionary containing two keys:
|
54 |
+
images (torch.Tensor): tensor of size [N, 3, H, W] (N = 1, or 0 for _EMPTY_IMAGE)
|
55 |
+
categories (List[str]): categories of the frames
|
56 |
+
"""
|
57 |
+
categories = [self.category_list[idx]]
|
58 |
+
fpath = self.image_list[idx]
|
59 |
+
transform = self.transform
|
60 |
+
|
61 |
+
try:
|
62 |
+
image = torch.from_numpy(np.ascontiguousarray(read_image(fpath, format="BGR")))
|
63 |
+
image = image.permute(2, 0, 1).unsqueeze(0).float() # HWC -> NCHW
|
64 |
+
if transform is not None:
|
65 |
+
image = transform(image)
|
66 |
+
return {"images": image, "categories": categories}
|
67 |
+
except (OSError, RuntimeError) as e:
|
68 |
+
logger = logging.getLogger(__name__)
|
69 |
+
logger.warning(f"Error opening image file container {fpath}: {e}")
|
70 |
+
|
71 |
+
return {"images": self._EMPTY_IMAGE, "categories": []}
|
72 |
+
|
73 |
+
def __len__(self):
|
74 |
+
return len(self.image_list)
|
densepose/data/inference_based_loader.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Facebook, Inc. and its affiliates.
|
2 |
+
|
3 |
+
# pyre-unsafe
|
4 |
+
|
5 |
+
import random
|
6 |
+
from typing import Any, Callable, Dict, Iterable, Iterator, List, Optional, Tuple
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
SampledData = Any
|
11 |
+
ModelOutput = Any
|
12 |
+
|
13 |
+
|
14 |
+
def _grouper(iterable: Iterable[Any], n: int, fillvalue=None) -> Iterator[Tuple[Any]]:
|
15 |
+
"""
|
16 |
+
Group elements of an iterable by chunks of size `n`, e.g.
|
17 |
+
grouper(range(9), 4) ->
|
18 |
+
(0, 1, 2, 3), (4, 5, 6, 7), (8, None, None, None)
|
19 |
+
"""
|
20 |
+
it = iter(iterable)
|
21 |
+
while True:
|
22 |
+
values = []
|
23 |
+
for _ in range(n):
|
24 |
+
try:
|
25 |
+
value = next(it)
|
26 |
+
except StopIteration:
|
27 |
+
if values:
|
28 |
+
values.extend([fillvalue] * (n - len(values)))
|
29 |
+
yield tuple(values)
|
30 |
+
return
|
31 |
+
values.append(value)
|
32 |
+
yield tuple(values)
|
33 |
+
|
34 |
+
|
35 |
+
class ScoreBasedFilter:
|
36 |
+
"""
|
37 |
+
Filters entries in model output based on their scores
|
38 |
+
Discards all entries with score less than the specified minimum
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(self, min_score: float = 0.8):
|
42 |
+
self.min_score = min_score
|
43 |
+
|
44 |
+
def __call__(self, model_output: ModelOutput) -> ModelOutput:
|
45 |
+
for model_output_i in model_output:
|
46 |
+
instances = model_output_i["instances"]
|
47 |
+
if not instances.has("scores"):
|
48 |
+
continue
|
49 |
+
instances_filtered = instances[instances.scores >= self.min_score]
|
50 |
+
model_output_i["instances"] = instances_filtered
|
51 |
+
return model_output
|
52 |
+
|
53 |
+
|
54 |
+
class InferenceBasedLoader:
|
55 |
+
"""
|
56 |
+
Data loader based on results inferred by a model. Consists of:
|
57 |
+
- a data loader that provides batches of images
|
58 |
+
- a model that is used to infer the results
|
59 |
+
- a data sampler that converts inferred results to annotations
|
60 |
+
"""
|
61 |
+
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
model: nn.Module,
|
65 |
+
data_loader: Iterable[List[Dict[str, Any]]],
|
66 |
+
data_sampler: Optional[Callable[[ModelOutput], List[SampledData]]] = None,
|
67 |
+
data_filter: Optional[Callable[[ModelOutput], ModelOutput]] = None,
|
68 |
+
shuffle: bool = True,
|
69 |
+
batch_size: int = 4,
|
70 |
+
inference_batch_size: int = 4,
|
71 |
+
drop_last: bool = False,
|
72 |
+
category_to_class_mapping: Optional[dict] = None,
|
73 |
+
):
|
74 |
+
"""
|
75 |
+
Constructor
|
76 |
+
|
77 |
+
Args:
|
78 |
+
model (torch.nn.Module): model used to produce data
|
79 |
+
data_loader (Iterable[List[Dict[str, Any]]]): iterable that provides
|
80 |
+
dictionaries with "images" and "categories" fields to perform inference on
|
81 |
+
data_sampler (Callable: ModelOutput -> SampledData): functor
|
82 |
+
that produces annotation data from inference results;
|
83 |
+
(optional, default: None)
|
84 |
+
data_filter (Callable: ModelOutput -> ModelOutput): filter
|
85 |
+
that selects model outputs for further processing
|
86 |
+
(optional, default: None)
|
87 |
+
shuffle (bool): if True, the input images get shuffled
|
88 |
+
batch_size (int): batch size for the produced annotation data
|
89 |
+
inference_batch_size (int): batch size for input images
|
90 |
+
drop_last (bool): if True, drop the last batch if it is undersized
|
91 |
+
category_to_class_mapping (dict): category to class mapping
|
92 |
+
"""
|
93 |
+
self.model = model
|
94 |
+
self.model.eval()
|
95 |
+
self.data_loader = data_loader
|
96 |
+
self.data_sampler = data_sampler
|
97 |
+
self.data_filter = data_filter
|
98 |
+
self.shuffle = shuffle
|
99 |
+
self.batch_size = batch_size
|
100 |
+
self.inference_batch_size = inference_batch_size
|
101 |
+
self.drop_last = drop_last
|
102 |
+
if category_to_class_mapping is not None:
|
103 |
+
self.category_to_class_mapping = category_to_class_mapping
|
104 |
+
else:
|
105 |
+
self.category_to_class_mapping = {}
|
106 |
+
|
107 |
+
def __iter__(self) -> Iterator[List[SampledData]]:
|
108 |
+
for batch in self.data_loader:
|
109 |
+
# batch : List[Dict[str: Tensor[N, C, H, W], str: Optional[str]]]
|
110 |
+
# images_batch : Tensor[N, C, H, W]
|
111 |
+
# image : Tensor[C, H, W]
|
112 |
+
images_and_categories = [
|
113 |
+
{"image": image, "category": category}
|
114 |
+
for element in batch
|
115 |
+
for image, category in zip(element["images"], element["categories"])
|
116 |
+
]
|
117 |
+
if not images_and_categories:
|
118 |
+
continue
|
119 |
+
if self.shuffle:
|
120 |
+
random.shuffle(images_and_categories)
|
121 |
+
yield from self._produce_data(images_and_categories) # pyre-ignore[6]
|
122 |
+
|
123 |
+
def _produce_data(
|
124 |
+
self, images_and_categories: List[Tuple[torch.Tensor, Optional[str]]]
|
125 |
+
) -> Iterator[List[SampledData]]:
|
126 |
+
"""
|
127 |
+
Produce batches of data from images
|
128 |
+
|
129 |
+
Args:
|
130 |
+
images_and_categories (List[Tuple[torch.Tensor, Optional[str]]]):
|
131 |
+
list of images and corresponding categories to process
|
132 |
+
|
133 |
+
Returns:
|
134 |
+
Iterator over batches of data sampled from model outputs
|
135 |
+
"""
|
136 |
+
data_batches: List[SampledData] = []
|
137 |
+
category_to_class_mapping = self.category_to_class_mapping
|
138 |
+
batched_images_and_categories = _grouper(images_and_categories, self.inference_batch_size)
|
139 |
+
for batch in batched_images_and_categories:
|
140 |
+
batch = [
|
141 |
+
{
|
142 |
+
"image": image_and_category["image"].to(self.model.device),
|
143 |
+
"category": image_and_category["category"],
|
144 |
+
}
|
145 |
+
for image_and_category in batch
|
146 |
+
if image_and_category is not None
|
147 |
+
]
|
148 |
+
if not batch:
|
149 |
+
continue
|
150 |
+
with torch.no_grad():
|
151 |
+
model_output = self.model(batch)
|
152 |
+
for model_output_i, batch_i in zip(model_output, batch):
|
153 |
+
assert len(batch_i["image"].shape) == 3
|
154 |
+
model_output_i["image"] = batch_i["image"]
|
155 |
+
instance_class = category_to_class_mapping.get(batch_i["category"], 0)
|
156 |
+
model_output_i["instances"].dataset_classes = torch.tensor(
|
157 |
+
[instance_class] * len(model_output_i["instances"])
|
158 |
+
)
|
159 |
+
model_output_filtered = (
|
160 |
+
model_output if self.data_filter is None else self.data_filter(model_output)
|
161 |
+
)
|
162 |
+
data = (
|
163 |
+
model_output_filtered
|
164 |
+
if self.data_sampler is None
|
165 |
+
else self.data_sampler(model_output_filtered)
|
166 |
+
)
|
167 |
+
for data_i in data:
|
168 |
+
if len(data_i["instances"]):
|
169 |
+
data_batches.append(data_i)
|
170 |
+
if len(data_batches) >= self.batch_size:
|
171 |
+
yield data_batches[: self.batch_size]
|
172 |
+
data_batches = data_batches[self.batch_size :]
|
173 |
+
if not self.drop_last and data_batches:
|
174 |
+
yield data_batches
|