import argparse import os os.environ['CUDA_HOME'] = '/usr/local/cuda' os.environ['PATH'] = os.environ['PATH'] + ':/usr/local/cuda/bin' from datetime import datetime import gradio as gr import spaces import numpy as np import torch from diffusers.image_processor import VaeImageProcessor from huggingface_hub import snapshot_download from PIL import Image torch.jit.script = lambda f: f from model.cloth_masker import AutoMasker, vis_mask from model.pipeline import CatVTONPipeline from utils import init_weight_dtype, resize_and_crop, resize_and_padding def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--base_model_path", type=str, default="booksforcharlie/stable-diffusion-inpainting", help=( "The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub." ), ) parser.add_argument( "--resume_path", type=str, default="zhengchong/CatVTON", help=( "The Path to the checkpoint of trained tryon model." ), ) parser.add_argument( "--output_dir", type=str, default="resource/demo/output", help="The output directory where the model predictions will be written.", ) parser.add_argument( "--width", type=int, default=768, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--height", type=int, default=1024, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--repaint", action="store_true", help="Whether to repaint the result image with the original background." ) parser.add_argument( "--allow_tf32", action="store_true", default=True, help=( "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" ), ) parser.add_argument( "--mixed_precision", type=str, default="bf16", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." ), ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank return args def image_grid(imgs, rows, cols): assert len(imgs) == rows * cols w, h = imgs[0].size grid = Image.new("RGB", size=(cols * w, rows * h)) for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) return grid args = parse_args() repo_path = snapshot_download(repo_id=args.resume_path) # Pipeline pipeline = CatVTONPipeline( base_ckpt=args.base_model_path, attn_ckpt=repo_path, attn_ckpt_version="mix", weight_dtype=init_weight_dtype(args.mixed_precision), use_tf32=args.allow_tf32, device='cuda' ) # AutoMasker mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True) automasker = AutoMasker( densepose_ckpt=os.path.join(repo_path, "DensePose"), schp_ckpt=os.path.join(repo_path, "SCHP"), device='cuda', ) @spaces.GPU(duration=120) def submit_function( person_image, cloth_image, cloth_type, num_inference_steps, guidance_scale, seed, show_type ): # Check if layers exist and are not empty if "layers" in person_image and person_image["layers"]: person_image, mask = person_image["background"], person_image["layers"][0] mask = Image.open(mask).convert("L") if len(np.unique(np.array(mask))) == 1: # All mask values are the same (empty mask) mask = None else: mask = np.array(mask) mask[mask > 0] = 255 # Convert to binary mask (0 or 255) mask = Image.fromarray(mask) else: person_image = person_image["background"] mask = None # No mask is provided, it will be auto-generated tmp_folder = args.output_dir date_str = datetime.now().strftime("%Y%m%d%H%M%S") result_save_path = os.path.join(tmp_folder, date_str[:8], date_str[8:] + ".png") if not os.path.exists(os.path.join(tmp_folder, date_str[:8])): os.makedirs(os.path.join(tmp_folder, date_str[:8])) generator = None if seed != -1: generator = torch.Generator(device='cuda').manual_seed(seed) person_image = Image.open(person_image).convert("RGB") cloth_image = Image.open(cloth_image).convert("RGB") person_image = resize_and_crop(person_image, (args.width, args.height)) cloth_image = resize_and_padding(cloth_image, (args.width, args.height)) # Process mask if mask is not None: mask = resize_and_crop(mask, (args.width, args.height)) else: mask = automasker( person_image, cloth_type )['mask'] mask = mask_processor.blur(mask, blur_factor=9) # Inference result_image = pipeline( image=person_image, condition_image=cloth_image, mask=mask, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=generator )[0] # Post-process masked_person = vis_mask(person_image, mask) save_result_image = image_grid([person_image, masked_person, cloth_image, result_image], 1, 4) save_result_image.save(result_save_path) if show_type == "result only": return result_image else: width, height = person_image.size if show_type == "input & result": condition_width = width // 2 conditions = image_grid([person_image, cloth_image], 2, 1) else: condition_width = width // 3 conditions = image_grid([person_image, masked_person, cloth_image], 3, 1) conditions = conditions.resize((condition_width, height), Image.NEAREST) new_result_image = Image.new("RGB", (width + condition_width + 5, height)) new_result_image.paste(conditions, (0, 0)) new_result_image.paste(result_image, (condition_width + 5, 0)) return new_result_image def person_example_fn(image_path): return image_path HEADER = """