#!/usr/bin/env python # -*- encoding: utf-8 -*- """ @Author : Peike Li @Contact : peike.li@yahoo.com @File : AugmentCE2P.py @Time : 8/4/19 3:35 PM @Desc : @License : This source code is licensed under the license found in the LICENSE file in the root directory of this source tree. """ import torch import torch.nn as nn from torch.nn import functional as F from torch.nn import BatchNorm2d, LeakyReLU affine_par = True pretrained_settings = { 'resnet101': { 'imagenet': { 'input_space': 'BGR', 'input_size': [3, 224, 224], 'input_range': [0, 1], 'mean': [0.406, 0.456, 0.485], 'std': [0.225, 0.224, 0.229], 'num_classes': 1000 } }, } def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None, fist_dilation=1, multi_grid=1): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=dilation * multi_grid, dilation=dilation * multi_grid, bias=False) self.bn2 = BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=False) self.relu_inplace = nn.ReLU(inplace=True) self.downsample = downsample self.dilation = dilation self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out = out + residual out = self.relu_inplace(out) return out class PSPModule(nn.Module): """ Reference: Zhao, Hengshuang, et al. *"Pyramid scene parsing network."* """ def __init__(self, features, out_features=512, sizes=(1, 2, 3, 6)): super(PSPModule, self).__init__() self.stages = [] self.stages = nn.ModuleList([self._make_stage(features, out_features, size) for size in sizes]) self.bottleneck = nn.Sequential( nn.Conv2d(features + len(sizes) * out_features, out_features, kernel_size=3, padding=1, dilation=1, bias=False), BatchNorm2d(out_features), LeakyReLU(), ) def _make_stage(self, features, out_features, size): prior = nn.AdaptiveAvgPool2d(output_size=(size, size)) conv = nn.Conv2d(features, out_features, kernel_size=1, bias=False) return nn.Sequential( prior, conv, # bn BatchNorm2d(out_features), LeakyReLU(), ) def forward(self, feats): h, w = feats.size(2), feats.size(3) priors = [F.interpolate(input=stage(feats), size=(h, w), mode='bilinear', align_corners=True) for stage in self.stages] + [feats] bottle = self.bottleneck(torch.cat(priors, 1)) return bottle class ASPPModule(nn.Module): """ Reference: Chen, Liang-Chieh, et al. *"Rethinking Atrous Convolution for Semantic Image Segmentation."* """ def __init__(self, features, inner_features=256, out_features=512, dilations=(12, 24, 36)): super(ASPPModule, self).__init__() self.conv1 = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)), nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1, bias=False), # InPlaceABNSync(inner_features) BatchNorm2d(inner_features), LeakyReLU(), ) self.conv2 = nn.Sequential( nn.Conv2d(features, inner_features, kernel_size=1, padding=0, dilation=1, bias=False), BatchNorm2d(inner_features), LeakyReLU(), ) self.conv3 = nn.Sequential( nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[0], dilation=dilations[0], bias=False), BatchNorm2d(inner_features), LeakyReLU(), ) self.conv4 = nn.Sequential( nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[1], dilation=dilations[1], bias=False), BatchNorm2d(inner_features), LeakyReLU(), ) self.conv5 = nn.Sequential( nn.Conv2d(features, inner_features, kernel_size=3, padding=dilations[2], dilation=dilations[2], bias=False), BatchNorm2d(inner_features), LeakyReLU(), ) self.bottleneck = nn.Sequential( nn.Conv2d(inner_features * 5, out_features, kernel_size=1, padding=0, dilation=1, bias=False), BatchNorm2d(inner_features), LeakyReLU(), nn.Dropout2d(0.1) ) def forward(self, x): _, _, h, w = x.size() feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True) feat2 = self.conv2(x) feat3 = self.conv3(x) feat4 = self.conv4(x) feat5 = self.conv5(x) out = torch.cat((feat1, feat2, feat3, feat4, feat5), 1) bottle = self.bottleneck(out) return bottle class Edge_Module(nn.Module): """ Edge Learning Branch """ def __init__(self, in_fea=[256, 512, 1024], mid_fea=256, out_fea=2): super(Edge_Module, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_fea[0], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False), BatchNorm2d(mid_fea), LeakyReLU(), ) self.conv2 = nn.Sequential( nn.Conv2d(in_fea[1], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False), BatchNorm2d(mid_fea), LeakyReLU(), ) self.conv3 = nn.Sequential( nn.Conv2d(in_fea[2], mid_fea, kernel_size=1, padding=0, dilation=1, bias=False), BatchNorm2d(mid_fea), LeakyReLU(), ) self.conv4 = nn.Conv2d(mid_fea, out_fea, kernel_size=3, padding=1, dilation=1, bias=True) # self.conv5 = nn.Conv2d(out_fea * 3, out_fea, kernel_size=1, padding=0, dilation=1, bias=True) def forward(self, x1, x2, x3): _, _, h, w = x1.size() edge1_fea = self.conv1(x1) # edge1 = self.conv4(edge1_fea) edge2_fea = self.conv2(x2) edge2 = self.conv4(edge2_fea) edge3_fea = self.conv3(x3) edge3 = self.conv4(edge3_fea) edge2_fea = F.interpolate(edge2_fea, size=(h, w), mode='bilinear', align_corners=True) edge3_fea = F.interpolate(edge3_fea, size=(h, w), mode='bilinear', align_corners=True) edge2 = F.interpolate(edge2, size=(h, w), mode='bilinear', align_corners=True) edge3 = F.interpolate(edge3, size=(h, w), mode='bilinear', align_corners=True) # edge = torch.cat([edge1, edge2, edge3], dim=1) edge_fea = torch.cat([edge1_fea, edge2_fea, edge3_fea], dim=1) # edge = self.conv5(edge) # return edge, edge_fea return edge_fea class Decoder_Module(nn.Module): """ Parsing Branch Decoder Module. """ def __init__(self, num_classes): super(Decoder_Module, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(512, 256, kernel_size=1, padding=0, dilation=1, bias=False), BatchNorm2d(256), LeakyReLU(), ) self.conv2 = nn.Sequential( nn.Conv2d(256, 48, kernel_size=1, stride=1, padding=0, dilation=1, bias=False), BatchNorm2d(48), LeakyReLU(), ) self.conv3 = nn.Sequential( nn.Conv2d(304, 256, kernel_size=1, padding=0, dilation=1, bias=False), BatchNorm2d(256), LeakyReLU(), nn.Conv2d(256, 256, kernel_size=1, padding=0, dilation=1, bias=False), BatchNorm2d(256), LeakyReLU(), ) # self.conv4 = nn.Conv2d(256, num_classes, kernel_size=1, padding=0, dilation=1, bias=True) def forward(self, xt, xl): _, _, h, w = xl.size() xt = F.interpolate(self.conv1(xt), size=(h, w), mode='bilinear', align_corners=True) xl = self.conv2(xl) x = torch.cat([xt, xl], dim=1) x = self.conv3(x) # seg = self.conv4(x) # return seg, x return x class ResNet(nn.Module): def __init__(self, block, layers, num_classes): self.inplanes = 128 super(ResNet, self).__init__() self.conv1 = conv3x3(3, 64, stride=2) self.bn1 = BatchNorm2d(64) self.relu1 = nn.ReLU(inplace=False) self.conv2 = conv3x3(64, 64) self.bn2 = BatchNorm2d(64) self.relu2 = nn.ReLU(inplace=False) self.conv3 = conv3x3(64, 128) self.bn3 = BatchNorm2d(128) self.relu3 = nn.ReLU(inplace=False) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=2, multi_grid=(1, 1, 1)) self.context_encoding = PSPModule(2048, 512) self.edge = Edge_Module() self.decoder = Decoder_Module(num_classes) self.fushion = nn.Sequential( nn.Conv2d(1024, 256, kernel_size=1, padding=0, dilation=1, bias=False), BatchNorm2d(256), LeakyReLU(), nn.Dropout2d(0.1), nn.Conv2d(256, num_classes, kernel_size=1, padding=0, dilation=1, bias=True) ) def _make_layer(self, block, planes, blocks, stride=1, dilation=1, multi_grid=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), BatchNorm2d(planes * block.expansion, affine=affine_par)) layers = [] generate_multi_grid = lambda index, grids: grids[index % len(grids)] if isinstance(grids, tuple) else 1 layers.append(block(self.inplanes, planes, stride, dilation=dilation, downsample=downsample, multi_grid=generate_multi_grid(0, multi_grid))) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append( block(self.inplanes, planes, dilation=dilation, multi_grid=generate_multi_grid(i, multi_grid))) return nn.Sequential(*layers) def forward(self, x): x = self.relu1(self.bn1(self.conv1(x))) x = self.relu2(self.bn2(self.conv2(x))) x = self.relu3(self.bn3(self.conv3(x))) x = self.maxpool(x) x2 = self.layer1(x) x3 = self.layer2(x2) x4 = self.layer3(x3) x5 = self.layer4(x4) x = self.context_encoding(x5) # parsing_result, parsing_fea = self.decoder(x, x2) parsing_fea = self.decoder(x, x2) # Edge Branch # edge_result, edge_fea = self.edge(x2, x3, x4) edge_fea = self.edge(x2, x3, x4) # Fusion Branch x = torch.cat([parsing_fea, edge_fea], dim=1) fusion_result = self.fushion(x) # return [[parsing_result, fusion_result], [edge_result]] return fusion_result def initialize_pretrained_model(model, settings, pretrained='./models/resnet101-imagenet.pth'): model.input_space = settings['input_space'] model.input_size = settings['input_size'] model.input_range = settings['input_range'] model.mean = settings['mean'] model.std = settings['std'] if pretrained is not None: saved_state_dict = torch.load(pretrained) new_params = model.state_dict().copy() for i in saved_state_dict: i_parts = i.split('.') if not i_parts[0] == 'fc': new_params['.'.join(i_parts[0:])] = saved_state_dict[i] model.load_state_dict(new_params) def resnet101(num_classes=20, pretrained='./models/resnet101-imagenet.pth'): model = ResNet(Bottleneck, [3, 4, 23, 3], num_classes) settings = pretrained_settings['resnet101']['imagenet'] initialize_pretrained_model(model, settings, pretrained) return model