import torch from torch.nn import functional as F def generate_edge_tensor(label, edge_width=3): # label = label.type(torch.cuda.FloatTensor) if len(label.shape) == 2: label = label.unsqueeze(0) n, h, w = label.shape edge = torch.zeros(label.shape, dtype=torch.float)#.cuda() # right edge_right = edge[:, 1:h, :] edge_right[(label[:, 1:h, :] != label[:, :h - 1, :]) & (label[:, 1:h, :] != 255) & (label[:, :h - 1, :] != 255)] = 1 # up edge_up = edge[:, :, :w - 1] edge_up[(label[:, :, :w - 1] != label[:, :, 1:w]) & (label[:, :, :w - 1] != 255) & (label[:, :, 1:w] != 255)] = 1 # upright edge_upright = edge[:, :h - 1, :w - 1] edge_upright[(label[:, :h - 1, :w - 1] != label[:, 1:h, 1:w]) & (label[:, :h - 1, :w - 1] != 255) & (label[:, 1:h, 1:w] != 255)] = 1 # bottomright edge_bottomright = edge[:, :h - 1, 1:w] edge_bottomright[(label[:, :h - 1, 1:w] != label[:, 1:h, :w - 1]) & (label[:, :h - 1, 1:w] != 255) & (label[:, 1:h, :w - 1] != 255)] = 1 kernel = torch.ones((1, 1, edge_width, edge_width), dtype=torch.float)#.cuda() with torch.no_grad(): edge = edge.unsqueeze(1) edge = F.conv2d(edge, kernel, stride=1, padding=1) edge[edge!=0] = 1 edge = edge.squeeze() return edge