File size: 10,082 Bytes
8b0903d
8ccf632
 
97a01d0
8ccf632
97a01d0
9693fed
97a01d0
8a2fb71
97a01d0
 
06f0278
97a01d0
 
 
 
670fde4
97a01d0
 
670fde4
97a01d0
 
dfb11c1
97a01d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd082a2
97a01d0
 
 
 
 
 
 
 
 
 
 
8a2fb71
97a01d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a2fb71
97a01d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a2fb71
97a01d0
 
 
 
 
 
 
 
8ccf632
9693fed
97a01d0
 
63f17a8
 
 
 
 
97a01d0
63f17a8
 
97a01d0
 
 
 
9693fed
97a01d0
9693fed
 
 
 
 
 
63f17a8
97a01d0
 
 
 
 
 
 
 
59a7070
 
 
 
8e31d11
 
8ccf632
 
97a01d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a2fb71
97a01d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9693fed
97a01d0
 
 
 
9693fed
97a01d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ccf632
97a01d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
import io

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = DiffusionPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-schnell",
    torch_dtype=dtype
).to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

import numpy as np
from collections import Counter

def get_prominent_colors(image, num_colors=5):
    """
    Get the most prominent colors from an image, focusing on edges
    """
    # Convert to numpy array
    img_array = np.array(image)
    
    # Create a simple edge mask using gradient magnitude
    gradient_x = np.gradient(img_array.mean(axis=2))[1]
    gradient_y = np.gradient(img_array.mean(axis=2))[0]
    gradient_magnitude = np.sqrt(gradient_x**2 + gradient_y**2)
    
    # Threshold to get edge pixels
    edge_threshold = np.percentile(gradient_magnitude, 90)  # Adjust percentile as needed
    edge_mask = gradient_magnitude > edge_threshold
    
    # Get colors from edge pixels
    edge_colors = img_array[edge_mask]
    
    # Convert colors to tuples for counting
    colors = [tuple(color) for color in edge_colors]
    
    # Count occurrences of each color
    color_counts = Counter(colors)
    
    # Get most common colors
    prominent_colors = color_counts.most_common(num_colors)
    
    return prominent_colors

def create_tshirt_preview(design_image, tshirt_color="white"):
    """
    Overlay the design onto the existing t-shirt template and color match
    """
    # Load the template t-shirt image
    tshirt = Image.open('image.jpeg')
    tshirt_width, tshirt_height = tshirt.size
    
    # Convert design to PIL Image if it's not already
    if not isinstance(design_image, Image.Image):
        design_image = Image.fromarray(design_image)
    
    # Get prominent colors from the design
    prominent_colors = get_prominent_colors(design_image)
    if prominent_colors:
        # Use the most prominent color for the t-shirt
        main_color = prominent_colors[0][0]  # RGB tuple of most common color
    else:
        # Fallback to white if no colors found
        main_color = (255, 255, 255)
    
    # Convert design to PIL Image if it's not already
    if not isinstance(design_image, Image.Image):
        design_image = Image.fromarray(design_image)
    
    # Resize design to fit nicely on shirt (40% of shirt width)
    design_width = int(tshirt_width * 0.35)  # Adjust this percentage as needed
    design_height = int(design_width * design_image.size[1] / design_image.size[0])
    design_image = design_image.resize((design_width, design_height), Image.Resampling.LANCZOS)
    
    # Calculate position to center design on shirt
    x = (tshirt_width - design_width) // 2
    y = int(tshirt_height * 0.2)  # Adjust this value based on your template
    
    # If design has transparency (RGBA), create mask
    if design_image.mode == 'RGBA':
        mask = design_image.split()[3]
    else:
        mask = None
    
    # Paste design onto shirt
    tshirt.paste(design_image, (x, y), mask)
    
    return tshirt

def enhance_prompt_for_tshirt(prompt, style=None):
    """Add specific terms to ensure good t-shirt designs."""
    style_terms = {
        "minimal": ["simple geometric shapes", "clean lines", "minimalist illustration"],
        "vintage": ["distressed effect", "retro typography", "vintage illustration"],
        "artistic": ["hand-drawn style", "watercolor effect", "artistic illustration"],
        "geometric": ["abstract shapes", "geometric patterns", "modern design"],
        "typography": ["bold typography", "creative lettering", "text-based design"],
        "realistic": ["realistic", "cinematic", "photograph"]
    }
    
    base_terms = [
        "create t-shirt design",
        "with centered composition",
        "high quality",
        "professional design",
        "clear background"
    ]
    
    enhanced_prompt = f"{prompt}, {', '.join(base_terms)}"
    
    if style and style in style_terms:
        style_specific_terms = style_terms[style]
        enhanced_prompt = f"{enhanced_prompt}, {', '.join(style_specific_terms)}"
    
    return enhanced_prompt

@spaces.GPU()
def infer(prompt, style=None, tshirt_color="white", seed=42, randomize_seed=False, 
          width=1024, height=1024, num_inference_steps=4, 
          progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    enhanced_prompt = enhance_prompt_for_tshirt(prompt, style)
    generator = torch.Generator().manual_seed(seed)
    
    # Generate the design
    design_image = pipe(
        prompt=enhanced_prompt,
        width=width,
        height=height,
        num_inference_steps=num_inference_steps,
        generator=generator,
        guidance_scale=0.0
    ).images[0]
    
    # Create t-shirt preview
    tshirt_preview = create_tshirt_preview(design_image, tshirt_color)
    
    return design_image, tshirt_preview, seed

# Available t-shirt colors
TSHIRT_COLORS = {
    "White": "#FFFFFF",
    "Black": "#000000",
    "Navy": "#000080",
    "Gray": "#808080"
}

examples = [
    ["Cool geometric mountain landscape", "minimal", "White"],
    ["Vintage motorcycle with flames", "vintage", "Black"],
    ["flamingo in scenic forset", "realistic", "White"],
    ["Adventure Starts typography", "typography", "White"]
]

styles = [
    "minimal",
    "vintage",
    "artistic",
    "geometric",
    "typography",
    "realistic"
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 1200px !important;
    padding: 20px;
}
.main-title {
    text-align: center;
    color: #2d3748;
    margin-bottom: 1rem;
    font-family: 'Poppins', sans-serif;
}
.subtitle {
    text-align: center;
    color: #4a5568;
    margin-bottom: 2rem;
    font-family: 'Inter', sans-serif;
    font-size: 0.95rem;
    line-height: 1.5;
}
.design-input {
    border: 2px solid #e2e8f0;
    border-radius: 10px;
    padding: 12px !important;
    margin-bottom: 1rem !important;
    font-size: 1rem;
    transition: all 0.3s ease;
}
.results-row {
    display: grid;
    grid-template-columns: 1fr 1fr;
    gap: 20px;
    margin-top: 20px;
}
"""

with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(
            """
            # 👕Deradh's T-Shirt Design Generator
            """,
            elem_classes=["main-title"]
        )
        
        gr.Markdown(
            """
            Create unique t-shirt designs using Deradh's AI. 
            Describe your design idea and select a style to generate professional-quality artwork 
            perfect for custom t-shirts.
            """,
            elem_classes=["subtitle"]
        )
        
        with gr.Row():
            with gr.Column(scale=2):
                prompt = gr.Text(
                    label="Design Description",
                    show_label=False,
                    max_lines=1,
                    placeholder="Describe your t-shirt design idea",
                    container=False,
                    elem_classes=["design-input"]
                )
            with gr.Column(scale=1):
                style = gr.Dropdown(
                    choices=[""] + styles,
                    value="",
                    label="Style",
                    container=False
                )
            with gr.Column(scale=1):
                tshirt_color = gr.Dropdown(
                    choices=list(TSHIRT_COLORS.keys()),
                    value="White",
                    label="T-Shirt Color",
                    container=False
                )
            run_button = gr.Button(
                "✨ Generate",
                scale=0,
                elem_classes=["generate-button"]
            )
        
        with gr.Row(elem_classes=["results-row"]):
            result = gr.Image(
                label="Generated Design",
                show_label=True,
                elem_classes=["result-image"]
            )
            preview = gr.Image(
                label="T-Shirt Preview",
                show_label=True,
                elem_classes=["preview-image"]
            )
        
        with gr.Accordion("🔧 Advanced Settings", open=False):
            with gr.Group():
                seed = gr.Slider(
                    label="Design Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(
                    label="Randomize Design",
                    value=True
                )
                
                with gr.Row():
                    width = gr.Slider(
                        label="Width",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=256,
                        maximum=MAX_IMAGE_SIZE,
                        step=32,
                        value=1024,
                    )
                
                num_inference_steps = gr.Slider(
                    label="Generation Quality (Steps)",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )
        
        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt, style, tshirt_color],
            outputs=[result, preview, seed],
            cache_examples=True
        )
        
        gr.on(
            triggers=[run_button.click, prompt.submit],
            fn=infer,
            inputs=[prompt, style, tshirt_color, seed, randomize_seed, width, height, num_inference_steps],
            outputs=[result, preview, seed]
        )

demo.launch()