Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,082 Bytes
8b0903d 8ccf632 97a01d0 8ccf632 97a01d0 9693fed 97a01d0 8a2fb71 97a01d0 06f0278 97a01d0 670fde4 97a01d0 670fde4 97a01d0 dfb11c1 97a01d0 dd082a2 97a01d0 8a2fb71 97a01d0 8a2fb71 97a01d0 8a2fb71 97a01d0 8ccf632 9693fed 97a01d0 63f17a8 97a01d0 63f17a8 97a01d0 9693fed 97a01d0 9693fed 63f17a8 97a01d0 59a7070 8e31d11 8ccf632 97a01d0 8a2fb71 97a01d0 9693fed 97a01d0 9693fed 97a01d0 8ccf632 97a01d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import gradio as gr
import numpy as np
import random
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
import io
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = DiffusionPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
torch_dtype=dtype
).to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
import numpy as np
from collections import Counter
def get_prominent_colors(image, num_colors=5):
"""
Get the most prominent colors from an image, focusing on edges
"""
# Convert to numpy array
img_array = np.array(image)
# Create a simple edge mask using gradient magnitude
gradient_x = np.gradient(img_array.mean(axis=2))[1]
gradient_y = np.gradient(img_array.mean(axis=2))[0]
gradient_magnitude = np.sqrt(gradient_x**2 + gradient_y**2)
# Threshold to get edge pixels
edge_threshold = np.percentile(gradient_magnitude, 90) # Adjust percentile as needed
edge_mask = gradient_magnitude > edge_threshold
# Get colors from edge pixels
edge_colors = img_array[edge_mask]
# Convert colors to tuples for counting
colors = [tuple(color) for color in edge_colors]
# Count occurrences of each color
color_counts = Counter(colors)
# Get most common colors
prominent_colors = color_counts.most_common(num_colors)
return prominent_colors
def create_tshirt_preview(design_image, tshirt_color="white"):
"""
Overlay the design onto the existing t-shirt template and color match
"""
# Load the template t-shirt image
tshirt = Image.open('image.jpeg')
tshirt_width, tshirt_height = tshirt.size
# Convert design to PIL Image if it's not already
if not isinstance(design_image, Image.Image):
design_image = Image.fromarray(design_image)
# Get prominent colors from the design
prominent_colors = get_prominent_colors(design_image)
if prominent_colors:
# Use the most prominent color for the t-shirt
main_color = prominent_colors[0][0] # RGB tuple of most common color
else:
# Fallback to white if no colors found
main_color = (255, 255, 255)
# Convert design to PIL Image if it's not already
if not isinstance(design_image, Image.Image):
design_image = Image.fromarray(design_image)
# Resize design to fit nicely on shirt (40% of shirt width)
design_width = int(tshirt_width * 0.35) # Adjust this percentage as needed
design_height = int(design_width * design_image.size[1] / design_image.size[0])
design_image = design_image.resize((design_width, design_height), Image.Resampling.LANCZOS)
# Calculate position to center design on shirt
x = (tshirt_width - design_width) // 2
y = int(tshirt_height * 0.2) # Adjust this value based on your template
# If design has transparency (RGBA), create mask
if design_image.mode == 'RGBA':
mask = design_image.split()[3]
else:
mask = None
# Paste design onto shirt
tshirt.paste(design_image, (x, y), mask)
return tshirt
def enhance_prompt_for_tshirt(prompt, style=None):
"""Add specific terms to ensure good t-shirt designs."""
style_terms = {
"minimal": ["simple geometric shapes", "clean lines", "minimalist illustration"],
"vintage": ["distressed effect", "retro typography", "vintage illustration"],
"artistic": ["hand-drawn style", "watercolor effect", "artistic illustration"],
"geometric": ["abstract shapes", "geometric patterns", "modern design"],
"typography": ["bold typography", "creative lettering", "text-based design"],
"realistic": ["realistic", "cinematic", "photograph"]
}
base_terms = [
"create t-shirt design",
"with centered composition",
"high quality",
"professional design",
"clear background"
]
enhanced_prompt = f"{prompt}, {', '.join(base_terms)}"
if style and style in style_terms:
style_specific_terms = style_terms[style]
enhanced_prompt = f"{enhanced_prompt}, {', '.join(style_specific_terms)}"
return enhanced_prompt
@spaces.GPU()
def infer(prompt, style=None, tshirt_color="white", seed=42, randomize_seed=False,
width=1024, height=1024, num_inference_steps=4,
progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
enhanced_prompt = enhance_prompt_for_tshirt(prompt, style)
generator = torch.Generator().manual_seed(seed)
# Generate the design
design_image = pipe(
prompt=enhanced_prompt,
width=width,
height=height,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0
).images[0]
# Create t-shirt preview
tshirt_preview = create_tshirt_preview(design_image, tshirt_color)
return design_image, tshirt_preview, seed
# Available t-shirt colors
TSHIRT_COLORS = {
"White": "#FFFFFF",
"Black": "#000000",
"Navy": "#000080",
"Gray": "#808080"
}
examples = [
["Cool geometric mountain landscape", "minimal", "White"],
["Vintage motorcycle with flames", "vintage", "Black"],
["flamingo in scenic forset", "realistic", "White"],
["Adventure Starts typography", "typography", "White"]
]
styles = [
"minimal",
"vintage",
"artistic",
"geometric",
"typography",
"realistic"
]
css = """
#col-container {
margin: 0 auto;
max-width: 1200px !important;
padding: 20px;
}
.main-title {
text-align: center;
color: #2d3748;
margin-bottom: 1rem;
font-family: 'Poppins', sans-serif;
}
.subtitle {
text-align: center;
color: #4a5568;
margin-bottom: 2rem;
font-family: 'Inter', sans-serif;
font-size: 0.95rem;
line-height: 1.5;
}
.design-input {
border: 2px solid #e2e8f0;
border-radius: 10px;
padding: 12px !important;
margin-bottom: 1rem !important;
font-size: 1rem;
transition: all 0.3s ease;
}
.results-row {
display: grid;
grid-template-columns: 1fr 1fr;
gap: 20px;
margin-top: 20px;
}
"""
with gr.Blocks(css=css, theme=gr.themes.Soft()) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
# 👕Deradh's T-Shirt Design Generator
""",
elem_classes=["main-title"]
)
gr.Markdown(
"""
Create unique t-shirt designs using Deradh's AI.
Describe your design idea and select a style to generate professional-quality artwork
perfect for custom t-shirts.
""",
elem_classes=["subtitle"]
)
with gr.Row():
with gr.Column(scale=2):
prompt = gr.Text(
label="Design Description",
show_label=False,
max_lines=1,
placeholder="Describe your t-shirt design idea",
container=False,
elem_classes=["design-input"]
)
with gr.Column(scale=1):
style = gr.Dropdown(
choices=[""] + styles,
value="",
label="Style",
container=False
)
with gr.Column(scale=1):
tshirt_color = gr.Dropdown(
choices=list(TSHIRT_COLORS.keys()),
value="White",
label="T-Shirt Color",
container=False
)
run_button = gr.Button(
"✨ Generate",
scale=0,
elem_classes=["generate-button"]
)
with gr.Row(elem_classes=["results-row"]):
result = gr.Image(
label="Generated Design",
show_label=True,
elem_classes=["result-image"]
)
preview = gr.Image(
label="T-Shirt Preview",
show_label=True,
elem_classes=["preview-image"]
)
with gr.Accordion("🔧 Advanced Settings", open=False):
with gr.Group():
seed = gr.Slider(
label="Design Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(
label="Randomize Design",
value=True
)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
num_inference_steps = gr.Slider(
label="Generation Quality (Steps)",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt, style, tshirt_color],
outputs=[result, preview, seed],
cache_examples=True
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[prompt, style, tshirt_color, seed, randomize_seed, width, height, num_inference_steps],
outputs=[result, preview, seed]
)
demo.launch() |