File size: 20,360 Bytes
8c72aec c54749c 8c72aec c54749c 8c72aec c54749c 8c72aec c54749c 8c72aec c54749c 8c72aec c54749c 8c72aec c54749c 8c72aec c54749c 8c72aec c54749c 8c72aec c54749c 8c72aec c54749c 8c72aec c54749c 8c72aec c54749c 8c72aec a0e73aa c54749c 8c72aec a0e73aa 8c72aec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
import sys
sys.path.append('./')
import spaces
import gradio as gr
import torch
from ip_adapter.utils import BLOCKS as BLOCKS
from ip_adapter.utils import controlnet_BLOCKS as controlnet_BLOCKS
from ip_adapter.utils import resize_content
import cv2
import numpy as np
import random
from PIL import Image
from transformers import AutoImageProcessor, AutoModel
from diffusers import (
AutoencoderKL,
ControlNetModel,
StableDiffusionXLControlNetPipeline,
)
from ip_adapter import CSGO
from transformers import BlipProcessor, BlipForConditionalGeneration
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
import os
os.system("git lfs install")
os.system("git clone https://huggingface.co/h94/IP-Adapter")
os.system("mv IP-Adapter/sdxl_models sdxl_models")
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="InstantX/CSGO", filename="csgo_4_32.bin", local_dir="./CSGO/")
os.system('rm -rf IP-Adapter/models')
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
image_encoder_path = "sdxl_models/image_encoder"
csgo_ckpt ='./CSGO/csgo_4_32.bin'
pretrained_vae_name_or_path ='madebyollin/sdxl-vae-fp16-fix'
controlnet_path = "TTPlanet/TTPLanet_SDXL_Controlnet_Tile_Realistic"
weight_dtype = torch.float16
os.system("git clone https://huggingface.co/TTPlanet/TTPLanet_SDXL_Controlnet_Tile_Realistic")
os.system("mv TTPLanet_SDXL_Controlnet_Tile_Realistic/TTPLANET_Controlnet_Tile_realistic_v2_fp16.safetensors TTPLanet_SDXL_Controlnet_Tile_Realistic/diffusion_pytorch_model.safetensors")
os.system('rm -rf TTPLanet_SDXL_Controlnet_Tile_Realistic/TTPLANET_Controlnet_Tile_realistic_v1_fp16.safetensors')
controlnet_path = "./TTPLanet_SDXL_Controlnet_Tile_Realistic"
vae = AutoencoderKL.from_pretrained(pretrained_vae_name_or_path,torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16, use_safetensors=True)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
add_watermarker=False,
vae=vae
)
pipe.enable_vae_tiling()
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to(device)
target_content_blocks = BLOCKS['content']
target_style_blocks = BLOCKS['style']
controlnet_target_content_blocks = controlnet_BLOCKS['content']
controlnet_target_style_blocks = controlnet_BLOCKS['style']
csgo = CSGO(pipe, image_encoder_path, csgo_ckpt, device, num_content_tokens=4, num_style_tokens=32,
target_content_blocks=target_content_blocks, target_style_blocks=target_style_blocks,
controlnet_adapter=True,
controlnet_target_content_blocks=controlnet_target_content_blocks,
controlnet_target_style_blocks=controlnet_target_style_blocks,
content_model_resampler=True,
style_model_resampler=True,
)
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def get_example():
case = [
[
"./assets/img_0.png",
'./assets/img_1.png',
"Image-Driven Style Transfer",
"there is a small house with a sheep statue on top of it",
0.6,
1.0,
7.0,
42
],
[
None,
'./assets/img_1.png',
"Text-Driven Style Synthesis",
"a cat",
0.01,
1.0,
7.0,
42
],
[
None,
'./assets/img_2.png',
"Text-Driven Style Synthesis",
"a cat",
0.01,
1.0,
7.0,
42,
],
[
"./assets/img_0.png",
'./assets/img_1.png',
"Text Edit-Driven Style Synthesis",
"there is a small house",
0.4,
1.0,
7.0,
42,
],
]
return case
def run_for_examples(content_image_pil, style_image_pil, target, prompt, scale_c, scale_s, guidance_scale, seed):
return create_image(
content_image_pil=content_image_pil,
style_image_pil=style_image_pil,
prompt=prompt,
scale_c=scale_c,
scale_s=scale_s,
guidance_scale=guidance_scale,
num_samples=2,
num_inference_steps=50,
seed=seed,
target=target,
)
def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols * w, rows * h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
@spaces.GPU
def create_image(content_image_pil,
style_image_pil,
prompt,
scale_c,
scale_s,
guidance_scale,
num_samples,
num_inference_steps,
seed,
target="Image-Driven Style Transfer",
):
if content_image_pil is None:
content_image_pil = Image.fromarray(
np.zeros((1024, 1024, 3), dtype=np.uint8)).convert('RGB')
if prompt == '':
inputs = blip_processor(content_image_pil, return_tensors="pt").to(device)
out = blip_model.generate(**inputs)
prompt = blip_processor.decode(out[0], skip_special_tokens=True)
width, height, content_image = resize_content(content_image_pil)
style_image = style_image_pil
neg_content_prompt = 'text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry'
if target == "Image-Driven Style Transfer":
images = csgo.generate(pil_content_image=content_image, pil_style_image=style_image,
prompt=prompt,
negative_prompt=neg_content_prompt,
height=height,
width=width,
content_scale=1.0,
style_scale=scale_s,
guidance_scale=guidance_scale,
num_images_per_prompt=num_samples,
num_inference_steps=num_inference_steps,
num_samples=1,
seed=seed,
image=content_image.convert('RGB'),
controlnet_conditioning_scale=scale_c)
elif target == "Text-Driven Style Synthesis":
content_image = Image.fromarray(
np.zeros((1024, 1024, 3), dtype=np.uint8)).convert('RGB')
images = csgo.generate(pil_content_image=content_image, pil_style_image=style_image,
prompt=prompt,
negative_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
height=height,
width=width,
content_scale=0.5,
style_scale=scale_s,
guidance_scale=7,
num_images_per_prompt=num_samples,
num_inference_steps=num_inference_steps,
num_samples=1,
seed=42,
image=content_image.convert('RGB'),
controlnet_conditioning_scale=scale_c)
elif target == "Text Edit-Driven Style Synthesis":
images = csgo.generate(pil_content_image=content_image, pil_style_image=style_image,
prompt=prompt,
negative_prompt=neg_content_prompt,
height=height,
width=width,
content_scale=1.0,
style_scale=scale_s,
guidance_scale=guidance_scale,
num_images_per_prompt=num_samples,
num_inference_steps=num_inference_steps,
num_samples=1,
seed=seed,
image=content_image.convert('RGB'),
controlnet_conditioning_scale=scale_c)
return [image_grid(images, 1, num_samples)]
# Description
title = r"""
<h1 align="center">CSGO: Content-Style Composition in Text-to-Image Generation</h1>
"""
description = r"""
<b>Official Gradio demo</b> for <a href='https://github.com/instantX-research/CSGO' target='_blank'><b>CSGO: Content-Style Composition in Text-to-Image Generation</b></a>.<br>
How to use:<br>
1. Upload a content image if you want to use image-driven style transfer.
2. Upload a style image.
3. Sets the type of task to perform, by default image-driven style transfer is performed. Options are <b>Image-driven style transfer, Text-driven style synthesis, and Text editing-driven style synthesis<b>.
4. <b>If you choose a text-driven task, enter your desired prompt<b>.
5. If you don't provide a prompt, the default is to use the BLIP model to generate the caption. We suggest that by providing detailed prompts for Content images, CSGO is able to effectively guarantee content.
6. Click the <b>Submit</b> button to begin customization.
7. Share your stylized photo with your friends and enjoy! π
Advanced usage:<br>
1. Click advanced options.
2. Choose different guidance and steps.
"""
article = r"""
---
π **Tips**
In CSGO, the more accurate the text prompts for content images, the better the content retention.
Text-driven style synthesis and text-edit-driven style synthesis are expected to be more stable in the next release.
---
π **Citation**
<br>
If our work is helpful for your research or applications, please cite us via:
```bibtex
@article{xing2024csgo,
title={CSGO: Content-Style Composition in Text-to-Image Generation},
author={Peng Xing and Haofan Wang and Yanpeng Sun and Qixun Wang and Xu Bai and Hao Ai and Renyuan Huang and Zechao Li},
year={2024},
journal = {arXiv 2408.16766},
}
import sys
sys.path.append('./')
import spaces
import gradio as gr
import torch
from ip_adapter.utils import BLOCKS as BLOCKS
from ip_adapter.utils import controlnet_BLOCKS as controlnet_BLOCKS
from ip_adapter.utils import resize_content
import cv2
import numpy as np
import random
from PIL import Image
from transformers import AutoImageProcessor, AutoModel
from diffusers import (
AutoencoderKL,
ControlNetModel,
StableDiffusionXLControlNetPipeline,
)
from ip_adapter import CSGO
from transformers import BlipProcessor, BlipForConditionalGeneration
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
import os
os.system("git lfs install")
os.system("git clone https://huggingface.co/h94/IP-Adapter")
os.system("mv IP-Adapter/sdxl_models sdxl_models")
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="InstantX/CSGO", filename="csgo_4_32.bin", local_dir="./CSGO/")
os.system('rm -rf IP-Adapter/models')
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
image_encoder_path = "sdxl_models/image_encoder"
csgo_ckpt ='./CSGO/csgo_4_32.bin'
pretrained_vae_name_or_path ='madebyollin/sdxl-vae-fp16-fix'
controlnet_path = "TTPlanet/TTPLanet_SDXL_Controlnet_Tile_Realistic"
weight_dtype = torch.float16
os.system("git clone https://huggingface.co/TTPlanet/TTPLanet_SDXL_Controlnet_Tile_Realistic")
os.system("mv TTPLanet_SDXL_Controlnet_Tile_Realistic/TTPLANET_Controlnet_Tile_realistic_v2_fp16.safetensors TTPLanet_SDXL_Controlnet_Tile_Realistic/diffusion_pytorch_model.safetensors")
os.system('rm -rf TTPLanet_SDXL_Controlnet_Tile_Realistic/TTPLANET_Controlnet_Tile_realistic_v1_fp16.safetensors')
controlnet_path = "./TTPLanet_SDXL_Controlnet_Tile_Realistic"
vae = AutoencoderKL.from_pretrained(pretrained_vae_name_or_path,torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16, use_safetensors=True)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
add_watermarker=False,
vae=vae
)
pipe.enable_vae_tiling()
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to(device)
target_content_blocks = BLOCKS['content']
target_style_blocks = BLOCKS['style']
controlnet_target_content_blocks = controlnet_BLOCKS['content']
controlnet_target_style_blocks = controlnet_BLOCKS['style']
csgo = CSGO(pipe, image_encoder_path, csgo_ckpt, device, num_content_tokens=4, num_style_tokens=32,
target_content_blocks=target_content_blocks, target_style_blocks=target_style_blocks,
controlnet_adapter=True,
controlnet_target_content_blocks=controlnet_target_content_blocks,
controlnet_target_style_blocks=controlnet_target_style_blocks,
content_model_resampler=True,
style_model_resampler=True,
)
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def get_example():
case = [
[
"./assets/img_0.png",
'./assets/img_1.png',
"Image-Driven Style Transfer",
"there is a small house with a sheep statue on top of it",
0.6,
1.0,
7.0,
42
],
[
None,
'./assets/img_1.png',
"Text-Driven Style Synthesis",
"a cat",
0.01,
1.0,
7.0,
42
],
[
None,
'./assets/img_2.png',
"Text-Driven Style Synthesis",
"a cat",
0.01,
1.0,
7.0,
42,
],
[
"./assets/img_0.png",
'./assets/img_1.png',
"Text Edit-Driven Style Synthesis",
"there is a small house",
0.4,
1.0,
7.0,
42,
],
]
return case
def run_for_examples(content_image_pil, style_image_pil, target, prompt, scale_c, scale_s, guidance_scale, seed):
return create_image(
content_image_pil=content_image_pil,
style_image_pil=style_image_pil,
prompt=prompt,
scale_c=scale_c,
scale_s=scale_s,
guidance_scale=guidance_scale,
num_samples=2,
num_inference_steps=50,
seed=seed,
target=target,
)
def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols * w, rows * h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
@spaces.GPU
def create_image(content_image_pil,
style_image_pil,
prompt,
scale_c,
scale_s,
guidance_scale,
num_samples,
num_inference_steps,
seed,
target="Image-Driven Style Transfer",
):
if content_image_pil is None:
content_image_pil = Image.fromarray(
np.zeros((1024, 1024, 3), dtype=np.uint8)).convert('RGB')
if prompt == '':
inputs = blip_processor(content_image_pil, return_tensors="pt").to(device)
out = blip_model.generate(**inputs)
prompt = blip_processor.decode(out[0], skip_special_tokens=True)
width, height, content_image = resize_content(content_image_pil)
style_image = style_image_pil
neg_content_prompt = 'text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry'
if target == "Image-Driven Style Transfer":
images = csgo.generate(pil_content_image=content_image, pil_style_image=style_image,
prompt=prompt,
negative_prompt=neg_content_prompt,
height=height,
width=width,
content_scale=1.0,
style_scale=scale_s,
guidance_scale=guidance_scale,
num_images_per_prompt=num_samples,
num_inference_steps=num_inference_steps,
num_samples=1,
seed=seed,
image=content_image.convert('RGB'),
controlnet_conditioning_scale=scale_c)
elif target == "Text-Driven Style Synthesis":
content_image = Image.fromarray(
np.zeros((1024, 1024, 3), dtype=np.uint8)).convert('RGB')
images = csgo.generate(pil_content_image=content_image, pil_style_image=style_image,
prompt=prompt,
negative_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
height=height,
width=width,
content_scale=0.5,
style_scale=scale_s,
guidance_scale=7,
num_images_per_prompt=num_samples,
num_inference_steps=num_inference_steps,
num_samples=1,
seed=42,
image=content_image.convert('RGB'),
controlnet_conditioning_scale=scale_c)
elif target == "Text Edit-Driven Style Synthesis":
images = csgo.generate(pil_content_image=content_image, pil_style_image=style_image,
prompt=prompt,
negative_prompt=neg_content_prompt,
height=height,
width=width,
content_scale=1.0,
style_scale=scale_s,
guidance_scale=guidance_scale,
num_images_per_prompt=num_samples,
num_inference_steps=num_inference_steps,
num_samples=1,
seed=seed,
image=content_image.convert('RGB'),
controlnet_conditioning_scale=scale_c)
return [image_grid(images, 1, num_samples)]
# Description
title = r"""
<h1 align="center">CSGO: Content-Style Composition in Text-to-Image Generation</h1>
"""
description = r'''
<b>Official Gradio demo</b> for <a href='https://github.com/instantX-research/CSGO' target='_blank'><b>CSGO: Content-Style Composition in Text-to-Image Generation</b></a>.<br>
How to use:<br>
1. Upload a content image if you want to use image-driven style transfer.
2. Upload a style image.
3. Sets the type of task to perform, by default image-driven style transfer is performed. Options are <b>Image-driven style transfer, Text-driven style synthesis, and Text editing-driven style synthesis<b>.
4. <b>If you choose a text-driven task, enter your desired prompt<b>.
5. If you don't provide a prompt, the default is to use the BLIP model to generate the caption. We suggest that by providing detailed prompts for Content images, CSGO is able to effectively guarantee content.
'''
Advanced usage:<br>
1. Click advanced options.
2. Choose different guidance and steps.
"""
|