import torch from transformers import AutoTokenizer, BertForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("textattack/bert-base-uncased-yelp-polarity") model = BertForSequenceClassification.from_pretrained("textattack/bert-base-uncased-yelp-polarity") inputs = tokenizer("GEMINI AI Just got updated", return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits predicted_class_id = logits.argmax().item() model.config.id2label[predicted_class_id] # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` num_labels = len(model.config.id2label) model = BertForSequenceClassification.from_pretrained("textattack/bert-base-uncased-yelp-polarity", num_labels=num_labels) labels = torch.tensor([1]) loss = model(**inputs, labels=labels).loss round(loss.item(), 2)