import streamlit as st import torch import torchaudio from audiocraft.models import MusicGen import os import numpy as np import base64 genres = ["Pop", "Rock", "Jazz", "Electronic", "Hip-Hop", "Classical", "Lofi", "Chillpop","Country","R&G", "Folk","Heavy Metal", "EDM", "Soil", "Funk","Reggae", "Disco", "Punk Rock", "House", "Techno","Indie Rock", "Grunge", "Ambient","Gospel", "Latin Music","Grime" ,"Trap", "Psychedelic Rock" ] @st.cache_resource() def load_model(): model = MusicGen.get_pretrained('facebook/musicgen-medium') return model def generate_music_tensors(descriptions, duration: int): model = load_model() # model = load_model().to('cpu') model.set_generation_params( use_sampling=True, top_k=250, duration=duration ) with st.spinner("Generating Music with Medium-Model..."): output = model.generate( descriptions=descriptions, progress=True, return_tokens=True ) st.success("Music Generation Complete!") return output def save_audio(samples: torch.Tensor): sample_rate = 30000 save_path = "audio_output" assert samples.dim() == 2 or samples.dim() == 3 samples = samples.detach().cpu() if samples.dim() == 2: samples = samples[None, ...] for idx, audio in enumerate(samples): audio_path = os.path.join(save_path, f"audio_{idx}.wav") torchaudio.save(audio_path, audio, sample_rate) def get_binary_file_downloader_html(bin_file, file_label='File'): with open(bin_file, 'rb') as f: data = f.read() bin_str = base64.b64encode(data).decode() href = f'Download {file_label}' return href st.set_page_config( page_icon= "musical_note", page_title= "Music Gen" ) def main(): with st.sidebar: st.header("""⚙️Generate Music ⚙️""",divider="rainbow") st.text("") st.subheader("1. Enter your music description.......") bpm = st.number_input("Enter Speed in BPM", min_value=60) text_area = st.text_area('Ex : 80s rock song with guitar and drums') st.text('') # Dropdown for genres selected_genre = st.selectbox("Select Genre", genres) st.subheader("2. Select time duration (In Seconds)") time_slider = st.slider("Select time duration (In Seconds)", 0, 60, 10) # time_slider = st.slider("Select time duration (In Minutes)", 0,300,10, step=1) st.title("""🎵 Song Lab AI 🎵""") st.text('') left_co,right_co = st.columns(2) left_co.write("""Music Generation through a prompt""") left_co.write(("""PS : First generation may take some time .......""")) if st.sidebar.button('Generate !'): with left_co: st.text('') st.text('') st.text('') st.text('') st.text('') st.text('') st.text('\n\n') st.subheader("Generated Music") # Generate audio # descriptions = [f"{text_area} {selected_genre} {bpm} BPM" for _ in range(5)] descriptions = [f"{text_area} {selected_genre} {bpm} BPM" for _ in range(1)] # Change the batch size to 1 music_tensors = generate_music_tensors(descriptions, time_slider) # Only play the full audio for index 0 idx = 0 music_tensor = music_tensors[idx] save_music_file = save_audio(music_tensor) audio_filepath = f'audio_output/audio_{idx}.wav' audio_file = open(audio_filepath, 'rb') audio_bytes = audio_file.read() # Play the full audio st.audio(audio_bytes, format='audio/wav') st.markdown(get_binary_file_downloader_html(audio_filepath, f'Audio_{idx}'), unsafe_allow_html=True) if __name__ == "__main__": main()