Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,6 @@ import os
|
|
6 |
import numpy as np
|
7 |
import base64
|
8 |
|
9 |
-
genres = ["Pop", "Rock", "Jazz", "Electronic", "Hip-Hop", "Classical", "Lofi", "Chillpop"]
|
10 |
|
11 |
@st.cache_resource()
|
12 |
def load_model():
|
@@ -23,19 +22,24 @@ def generate_music_tensors(descriptions, duration: int):
|
|
23 |
)
|
24 |
|
25 |
with st.spinner("Generating Music..."):
|
|
|
|
|
26 |
output = model.generate(
|
27 |
descriptions=descriptions,
|
28 |
progress=True,
|
29 |
return_tokens=True
|
30 |
)
|
31 |
|
32 |
-
st.success("Music Generation Complete!")
|
33 |
return output
|
34 |
|
35 |
-
|
36 |
def save_audio(samples: torch.Tensor):
|
37 |
sample_rate = 30000
|
38 |
-
save_path = "/tmp/audio_output"
|
|
|
|
|
|
|
|
|
39 |
assert samples.dim() == 2 or samples.dim() == 3
|
40 |
|
41 |
samples = samples.detach().cpu()
|
@@ -44,23 +48,36 @@ def save_audio(samples: torch.Tensor):
|
|
44 |
|
45 |
for idx, audio in enumerate(samples):
|
46 |
audio_path = os.path.join(save_path, f"audio_{idx}.wav")
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
def get_binary_file_downloader_html(bin_file, file_label='File'):
|
50 |
with open(bin_file, 'rb') as f:
|
51 |
data = f.read()
|
52 |
-
|
53 |
-
|
54 |
return href
|
55 |
|
56 |
st.set_page_config(
|
57 |
page_icon= "musical_note",
|
58 |
page_title= "Music Gen"
|
59 |
)
|
60 |
-
|
61 |
def main():
|
62 |
with st.sidebar:
|
63 |
-
st.header("""⚙️Generate Music ⚙️""",divider="rainbow")
|
64 |
st.text("")
|
65 |
st.subheader("1. Enter your music description.......")
|
66 |
bpm = st.number_input("Enter Speed in BPM", min_value=60)
|
@@ -75,7 +92,7 @@ def main():
|
|
75 |
|
76 |
st.title("""🎵 Song Lab AI 🎵""")
|
77 |
st.text('')
|
78 |
-
left_co,right_co = st.columns(2)
|
79 |
left_co.write("""Music Generation through a prompt""")
|
80 |
left_co.write(("""PS : First generation may take some time ......."""))
|
81 |
|
@@ -93,7 +110,7 @@ def main():
|
|
93 |
descriptions = [f"{text_area} {selected_genre} {bpm} BPM" for _ in range(5)] # Adjust the batch size (5 in this case)
|
94 |
music_tensors = generate_music_tensors(descriptions, time_slider)
|
95 |
|
96 |
-
|
97 |
idx = 0
|
98 |
music_tensor = music_tensors[idx]
|
99 |
save_music_file = save_audio(music_tensor)
|
@@ -103,8 +120,9 @@ def main():
|
|
103 |
|
104 |
# Play the full audio
|
105 |
st.audio(audio_bytes, format='audio/wav')
|
106 |
-
st.markdown(get_binary_file_downloader_html(audio_filepath, f'Audio_{idx}'), unsafe_allow_html=True)
|
107 |
|
|
|
|
|
108 |
|
109 |
if __name__ == "__main__":
|
110 |
main()
|
|
|
6 |
import numpy as np
|
7 |
import base64
|
8 |
|
|
|
9 |
|
10 |
@st.cache_resource()
|
11 |
def load_model():
|
|
|
22 |
)
|
23 |
|
24 |
with st.spinner("Generating Music..."):
|
25 |
+
st.markdown("### Generating Music... 🎵🎶🎹")
|
26 |
+
|
27 |
output = model.generate(
|
28 |
descriptions=descriptions,
|
29 |
progress=True,
|
30 |
return_tokens=True
|
31 |
)
|
32 |
|
33 |
+
st.success("Music Generation Complete! 🎉")
|
34 |
return output
|
35 |
|
|
|
36 |
def save_audio(samples: torch.Tensor):
|
37 |
sample_rate = 30000
|
38 |
+
save_path = "/tmp/audio_output" # Use /tmp directory
|
39 |
+
|
40 |
+
if not os.path.exists(save_path):
|
41 |
+
os.makedirs(save_path)
|
42 |
+
|
43 |
assert samples.dim() == 2 or samples.dim() == 3
|
44 |
|
45 |
samples = samples.detach().cpu()
|
|
|
48 |
|
49 |
for idx, audio in enumerate(samples):
|
50 |
audio_path = os.path.join(save_path, f"audio_{idx}.wav")
|
51 |
+
try:
|
52 |
+
torchaudio.save(audio_path, audio, sample_rate)
|
53 |
+
except Exception as e:
|
54 |
+
st.error(f"Error saving audio file: {e}")
|
55 |
+
return None
|
56 |
+
|
57 |
+
return save_path
|
58 |
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
# Define the genres list
|
63 |
+
genres = ["Pop", "Rock", "Jazz", "Electronic", "Hip-Hop", "Classical", "Lofi", "Chillpop"]
|
64 |
+
|
65 |
+
|
66 |
+
# Add this function for downloading binary files
|
67 |
def get_binary_file_downloader_html(bin_file, file_label='File'):
|
68 |
with open(bin_file, 'rb') as f:
|
69 |
data = f.read()
|
70 |
+
bin_str = base64.b64encode(data).decode()
|
71 |
+
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{file_label}">Download {file_label}</a>'
|
72 |
return href
|
73 |
|
74 |
st.set_page_config(
|
75 |
page_icon= "musical_note",
|
76 |
page_title= "Music Gen"
|
77 |
)
|
|
|
78 |
def main():
|
79 |
with st.sidebar:
|
80 |
+
st.header("""⚙️Generate Music ⚙️""", divider="rainbow")
|
81 |
st.text("")
|
82 |
st.subheader("1. Enter your music description.......")
|
83 |
bpm = st.number_input("Enter Speed in BPM", min_value=60)
|
|
|
92 |
|
93 |
st.title("""🎵 Song Lab AI 🎵""")
|
94 |
st.text('')
|
95 |
+
left_co, right_co = st.columns(2)
|
96 |
left_co.write("""Music Generation through a prompt""")
|
97 |
left_co.write(("""PS : First generation may take some time ......."""))
|
98 |
|
|
|
110 |
descriptions = [f"{text_area} {selected_genre} {bpm} BPM" for _ in range(5)] # Adjust the batch size (5 in this case)
|
111 |
music_tensors = generate_music_tensors(descriptions, time_slider)
|
112 |
|
113 |
+
# Only play the full audio for index 0
|
114 |
idx = 0
|
115 |
music_tensor = music_tensors[idx]
|
116 |
save_music_file = save_audio(music_tensor)
|
|
|
120 |
|
121 |
# Play the full audio
|
122 |
st.audio(audio_bytes, format='audio/wav')
|
|
|
123 |
|
124 |
+
# Add download link
|
125 |
+
st.markdown(get_binary_file_downloader_html(audio_filepath, f'Audio_{idx}'), unsafe_allow_html=True)
|
126 |
|
127 |
if __name__ == "__main__":
|
128 |
main()
|