File size: 35,600 Bytes
3fe1151
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
diff --git a/configs/cbnet/cascade_rcnn_cbv2d1_r2_101_mdconv_fpn_20e_fp16_ms400-1400_giou_4conv1f_coco.py b/configs/cbnet/cascade_rcnn_cbv2d1_r2_101_mdconv_fpn_20e_fp16_ms400-1400_giou_4conv1f_coco.py
index 167d4379..7c0bd239 100644
--- a/configs/cbnet/cascade_rcnn_cbv2d1_r2_101_mdconv_fpn_20e_fp16_ms400-1400_giou_4conv1f_coco.py
+++ b/configs/cbnet/cascade_rcnn_cbv2d1_r2_101_mdconv_fpn_20e_fp16_ms400-1400_giou_4conv1f_coco.py
@@ -2,9 +2,9 @@ _base_ = '../res2net/cascade_rcnn_r2_101_fpn_20e_coco.py'
 
 model = dict(
     backbone=dict(
-        type='CBRes2Net', 
+        type='CBRes2Net',
         cb_del_stages=1,
-        cb_inplanes=[64, 256, 512, 1024, 2048], 
+        cb_inplanes=[64, 256, 512, 1024, 2048],
         dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
         stage_with_dcn=(False, True, True, True)
     ),
@@ -28,7 +28,7 @@ model = dict(
                     target_stds=[0.1, 0.1, 0.2, 0.2]),
                 reg_class_agnostic=False,
                 reg_decoded_bbox=True,
-                norm_cfg=dict(type='SyncBN', requires_grad=True),
+                norm_cfg=dict(type='BN', requires_grad=True),
                 loss_cls=dict(
                     type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
                 loss_bbox=dict(type='GIoULoss', loss_weight=10.0)),
@@ -47,7 +47,7 @@ model = dict(
                     target_stds=[0.05, 0.05, 0.1, 0.1]),
                 reg_class_agnostic=False,
                 reg_decoded_bbox=True,
-                norm_cfg=dict(type='SyncBN', requires_grad=True),
+                norm_cfg=dict(type='BN', requires_grad=True),
                 loss_cls=dict(
                     type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
                 loss_bbox=dict(type='GIoULoss', loss_weight=10.0)),
@@ -66,7 +66,7 @@ model = dict(
                     target_stds=[0.033, 0.033, 0.067, 0.067]),
                 reg_class_agnostic=False,
                 reg_decoded_bbox=True,
-                norm_cfg=dict(type='SyncBN', requires_grad=True),
+                norm_cfg=dict(type='BN', requires_grad=True),
                 loss_cls=dict(
                     type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
                 loss_bbox=dict(type='GIoULoss', loss_weight=10.0))
diff --git a/configs/cbnet/htc_cbv2_swin_base_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_20e_coco.py b/configs/cbnet/htc_cbv2_swin_base_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_20e_coco.py
index 51edfd62..a7434c5d 100644
--- a/configs/cbnet/htc_cbv2_swin_base_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_20e_coco.py
+++ b/configs/cbnet/htc_cbv2_swin_base_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_20e_coco.py
@@ -18,7 +18,7 @@ model = dict(
                     target_stds=[0.1, 0.1, 0.2, 0.2]),
                 reg_class_agnostic=True,
                 reg_decoded_bbox=True,
-                norm_cfg=dict(type='SyncBN', requires_grad=True),
+                norm_cfg=dict(type='BN', requires_grad=True),
                 loss_cls=dict(
                     type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
                 loss_bbox=dict(type='GIoULoss', loss_weight=10.0)),
@@ -37,7 +37,7 @@ model = dict(
                     target_stds=[0.05, 0.05, 0.1, 0.1]),
                 reg_class_agnostic=True,
                 reg_decoded_bbox=True,
-                norm_cfg=dict(type='SyncBN', requires_grad=True),
+                norm_cfg=dict(type='BN', requires_grad=True),
                 loss_cls=dict(
                     type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
                 loss_bbox=dict(type='GIoULoss', loss_weight=10.0)),
@@ -56,7 +56,7 @@ model = dict(
                     target_stds=[0.033, 0.033, 0.067, 0.067]),
                 reg_class_agnostic=True,
                 reg_decoded_bbox=True,
-                norm_cfg=dict(type='SyncBN', requires_grad=True),
+                norm_cfg=dict(type='BN', requires_grad=True),
                 loss_cls=dict(
                     type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
                 loss_bbox=dict(type='GIoULoss', loss_weight=10.0))
diff --git a/mmdet/__init__.py b/mmdet/__init__.py
index 646ee84e..9e846286 100644
--- a/mmdet/__init__.py
+++ b/mmdet/__init__.py
@@ -20,9 +20,9 @@ mmcv_maximum_version = '1.4.0'
 mmcv_version = digit_version(mmcv.__version__)
 
 
-assert (mmcv_version >= digit_version(mmcv_minimum_version)
-        and mmcv_version <= digit_version(mmcv_maximum_version)), \
-    f'MMCV=={mmcv.__version__} is used but incompatible. ' \
-    f'Please install mmcv>={mmcv_minimum_version}, <={mmcv_maximum_version}.'
+#assert (mmcv_version >= digit_version(mmcv_minimum_version)
+#        and mmcv_version <= digit_version(mmcv_maximum_version)), \
+#    f'MMCV=={mmcv.__version__} is used but incompatible. ' \
+#    f'Please install mmcv>={mmcv_minimum_version}, <={mmcv_maximum_version}.'
 
 __all__ = ['__version__', 'short_version']
diff --git a/mmdet/core/mask/structures.py b/mmdet/core/mask/structures.py
index 6f5a62ae..a9d0ebb4 100644
--- a/mmdet/core/mask/structures.py
+++ b/mmdet/core/mask/structures.py
@@ -1,3 +1,4 @@
+# Copyright (c) OpenMMLab. All rights reserved.
 from abc import ABCMeta, abstractmethod
 
 import cv2
@@ -528,6 +529,21 @@ class BitmapMasks(BaseInstanceMasks):
         self = cls(masks, height=height, width=width)
         return self
 
+    def get_bboxes(self):
+        num_masks = len(self)
+        boxes = np.zeros((num_masks, 4), dtype=np.float32)
+        x_any = self.masks.any(axis=1)
+        y_any = self.masks.any(axis=2)
+        for idx in range(num_masks):
+            x = np.where(x_any[idx, :])[0]
+            y = np.where(y_any[idx, :])[0]
+            if len(x) > 0 and len(y) > 0:
+                # use +1 for x_max and y_max so that the right and bottom
+                # boundary of instance masks are fully included by the box
+                boxes[idx, :] = np.array([x[0], y[0], x[-1] + 1, y[-1] + 1],
+                                         dtype=np.float32)
+        return boxes
+
 
 class PolygonMasks(BaseInstanceMasks):
     """This class represents masks in the form of polygons.
@@ -637,8 +653,8 @@ class PolygonMasks(BaseInstanceMasks):
                 resized_poly = []
                 for p in poly_per_obj:
                     p = p.copy()
-                    p[0::2] *= w_scale
-                    p[1::2] *= h_scale
+                    p[0::2] = p[0::2] * w_scale
+                    p[1::2] = p[1::2] * h_scale
                     resized_poly.append(p)
                 resized_masks.append(resized_poly)
             resized_masks = PolygonMasks(resized_masks, *out_shape)
@@ -690,8 +706,8 @@ class PolygonMasks(BaseInstanceMasks):
                 for p in poly_per_obj:
                     # pycocotools will clip the boundary
                     p = p.copy()
-                    p[0::2] -= bbox[0]
-                    p[1::2] -= bbox[1]
+                    p[0::2] = p[0::2] - bbox[0]
+                    p[1::2] = p[1::2] - bbox[1]
                     cropped_poly_per_obj.append(p)
                 cropped_masks.append(cropped_poly_per_obj)
             cropped_masks = PolygonMasks(cropped_masks, h, w)
@@ -736,12 +752,12 @@ class PolygonMasks(BaseInstanceMasks):
                 p = p.copy()
                 # crop
                 # pycocotools will clip the boundary
-                p[0::2] -= bbox[0]
-                p[1::2] -= bbox[1]
+                p[0::2] = p[0::2] - bbox[0]
+                p[1::2] = p[1::2] - bbox[1]
 
                 # resize
-                p[0::2] *= w_scale
-                p[1::2] *= h_scale
+                p[0::2] = p[0::2] * w_scale
+                p[1::2] = p[1::2] * h_scale
                 resized_mask.append(p)
             resized_masks.append(resized_mask)
         return PolygonMasks(resized_masks, *out_shape)
@@ -944,6 +960,7 @@ class PolygonMasks(BaseInstanceMasks):
                 a list of vertices, in CCW order.
             """
             from scipy.stats import truncnorm
+
             # Generate around the unit circle
             cx, cy = (0.0, 0.0)
             radius = 1
@@ -1019,6 +1036,24 @@ class PolygonMasks(BaseInstanceMasks):
         self = cls(masks, height, width)
         return self
 
+    def get_bboxes(self):
+        num_masks = len(self)
+        boxes = np.zeros((num_masks, 4), dtype=np.float32)
+        for idx, poly_per_obj in enumerate(self.masks):
+            # simply use a number that is big enough for comparison with
+            # coordinates
+            xy_min = np.array([self.width * 2, self.height * 2],
+                              dtype=np.float32)
+            xy_max = np.zeros(2, dtype=np.float32)
+            for p in poly_per_obj:
+                xy = np.array(p).reshape(-1, 2).astype(np.float32)
+                xy_min = np.minimum(xy_min, np.min(xy, axis=0))
+                xy_max = np.maximum(xy_max, np.max(xy, axis=0))
+            boxes[idx, :2] = xy_min
+            boxes[idx, 2:] = xy_max
+
+        return boxes
+
 
 def polygon_to_bitmap(polygons, height, width):
     """Convert masks from the form of polygons to bitmaps.
@@ -1035,3 +1070,33 @@ def polygon_to_bitmap(polygons, height, width):
     rle = maskUtils.merge(rles)
     bitmap_mask = maskUtils.decode(rle).astype(np.bool)
     return bitmap_mask
+
+
+def bitmap_to_polygon(bitmap):
+    """Convert masks from the form of bitmaps to polygons.
+
+    Args:
+        bitmap (ndarray): masks in bitmap representation.
+
+    Return:
+        list[ndarray]: the converted mask in polygon representation.
+        bool: whether the mask has holes.
+    """
+    bitmap = np.ascontiguousarray(bitmap).astype(np.uint8)
+    # cv2.RETR_CCOMP: retrieves all of the contours and organizes them
+    #   into a two-level hierarchy. At the top level, there are external
+    #   boundaries of the components. At the second level, there are
+    #   boundaries of the holes. If there is another contour inside a hole
+    #   of a connected component, it is still put at the top level.
+    # cv2.CHAIN_APPROX_NONE: stores absolutely all the contour points.
+    outs = cv2.findContours(bitmap, cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE)
+    contours = outs[-2]
+    hierarchy = outs[-1]
+    if hierarchy is None:
+        return [], False
+    # hierarchy[i]: 4 elements, for the indexes of next, previous,
+    # parent, or nested contours. If there is no corresponding contour,
+    # it will be -1.
+    with_hole = (hierarchy.reshape(-1, 4)[:, 3] >= 0).any()
+    contours = [c.reshape(-1, 2) for c in contours]
+    return contours, with_hole
diff --git a/mmdet/core/visualization/image.py b/mmdet/core/visualization/image.py
index 5a148384..66f82a38 100644
--- a/mmdet/core/visualization/image.py
+++ b/mmdet/core/visualization/image.py
@@ -1,3 +1,5 @@
+# Copyright (c) OpenMMLab. All rights reserved.
+import cv2
 import matplotlib.pyplot as plt
 import mmcv
 import numpy as np
@@ -5,17 +7,25 @@ import pycocotools.mask as mask_util
 from matplotlib.collections import PatchCollection
 from matplotlib.patches import Polygon
 
+#from mmdet.core.evaluation.panoptic_utils import INSTANCE_OFFSET
+from ..mask.structures import bitmap_to_polygon
 from ..utils import mask2ndarray
+from .palette import get_palette, palette_val
+
+__all__ = [
+    'color_val_matplotlib', 'draw_masks', 'draw_bboxes', 'draw_labels',
+    'imshow_det_bboxes', 'imshow_gt_det_bboxes'
+]
 
 EPS = 1e-2
 
 
 def color_val_matplotlib(color):
     """Convert various input in BGR order to normalized RGB matplotlib color
-    tuples,
+    tuples.
 
     Args:
-        color (:obj:`Color`/str/tuple/int/ndarray): Color inputs
+        color (:obj`Color` | str | tuple | int | ndarray): Color inputs.
 
     Returns:
         tuple[float]: A tuple of 3 normalized floats indicating RGB channels.
@@ -25,9 +35,177 @@ def color_val_matplotlib(color):
     return tuple(color)
 
 
+def _get_adaptive_scales(areas, min_area=800, max_area=30000):
+    """Get adaptive scales according to areas.
+
+    The scale range is [0.5, 1.0]. When the area is less than
+    ``'min_area'``, the scale is 0.5 while the area is larger than
+    ``'max_area'``, the scale is 1.0.
+
+    Args:
+        areas (ndarray): The areas of bboxes or masks with the
+            shape of (n, ).
+        min_area (int): Lower bound areas for adaptive scales.
+            Default: 800.
+        max_area (int): Upper bound areas for adaptive scales.
+            Default: 30000.
+
+    Returns:
+        ndarray: The adaotive scales with the shape of (n, ).
+    """
+    scales = 0.5 + (areas - min_area) / (max_area - min_area)
+    scales = np.clip(scales, 0.5, 1.0)
+    return scales
+
+
+def _get_bias_color(base, max_dist=30):
+    """Get different colors for each masks.
+
+    Get different colors for each masks by adding a bias
+    color to the base category color.
+    Args:
+        base (ndarray): The base category color with the shape
+            of (3, ).
+        max_dist (int): The max distance of bias. Default: 30.
+
+    Returns:
+        ndarray: The new color for a mask with the shape of (3, ).
+    """
+    new_color = base + np.random.randint(
+        low=-max_dist, high=max_dist + 1, size=3)
+    return np.clip(new_color, 0, 255, new_color)
+
+
+def draw_bboxes(ax, bboxes, color='g', alpha=0.8, thickness=2):
+    """Draw bounding boxes on the axes.
+
+    Args:
+        ax (matplotlib.Axes): The input axes.
+        bboxes (ndarray): The input bounding boxes with the shape
+            of (n, 4).
+        color (list[tuple] | matplotlib.color): the colors for each
+            bounding boxes.
+        alpha (float): Transparency of bounding boxes. Default: 0.8.
+        thickness (int): Thickness of lines. Default: 2.
+
+    Returns:
+        matplotlib.Axes: The result axes.
+    """
+    polygons = []
+    for i, bbox in enumerate(bboxes):
+        bbox_int = bbox.astype(np.int32)
+        poly = [[bbox_int[0], bbox_int[1]], [bbox_int[0], bbox_int[3]],
+                [bbox_int[2], bbox_int[3]], [bbox_int[2], bbox_int[1]]]
+        np_poly = np.array(poly).reshape((4, 2))
+        polygons.append(Polygon(np_poly))
+    p = PatchCollection(
+        polygons,
+        facecolor='none',
+        edgecolors=color,
+        linewidths=thickness,
+        alpha=alpha)
+    ax.add_collection(p)
+
+    return ax
+
+
+def draw_labels(ax,
+                labels,
+                positions,
+                scores=None,
+                class_names=None,
+                color='w',
+                font_size=8,
+                scales=None,
+                horizontal_alignment='left'):
+    """Draw labels on the axes.
+
+    Args:
+        ax (matplotlib.Axes): The input axes.
+        labels (ndarray): The labels with the shape of (n, ).
+        positions (ndarray): The positions to draw each labels.
+        scores (ndarray): The scores for each labels.
+        class_names (list[str]): The class names.
+        color (list[tuple] | matplotlib.color): The colors for labels.
+        font_size (int): Font size of texts. Default: 8.
+        scales (list[float]): Scales of texts. Default: None.
+        horizontal_alignment (str): The horizontal alignment method of
+            texts. Default: 'left'.
+
+    Returns:
+        matplotlib.Axes: The result axes.
+    """
+    for i, (pos, label) in enumerate(zip(positions, labels)):
+        label_text = class_names[
+            label] if class_names is not None else f'class {label}'
+        if scores is not None:
+            label_text += f'|{scores[i]:.02f}'
+        text_color = color[i] if isinstance(color, list) else color
+
+        font_size_mask = font_size if scales is None else font_size * scales[i]
+        ax.text(
+            pos[0],
+            pos[1],
+            f'{label_text}',
+            bbox={
+                'facecolor': 'black',
+                'alpha': 0.8,
+                'pad': 0.7,
+                'edgecolor': 'none'
+            },
+            color=text_color,
+            fontsize=font_size_mask,
+            verticalalignment='top',
+            horizontalalignment=horizontal_alignment)
+
+    return ax
+
+
+def draw_masks(ax, img, masks, color=None, with_edge=True, alpha=0.8):
+    """Draw masks on the image and their edges on the axes.
+
+    Args:
+        ax (matplotlib.Axes): The input axes.
+        img (ndarray): The image with the shape of (3, h, w).
+        masks (ndarray): The masks with the shape of (n, h, w).
+        color (ndarray): The colors for each masks with the shape
+            of (n, 3).
+        with_edge (bool): Whether to draw edges. Default: True.
+        alpha (float): Transparency of bounding boxes. Default: 0.8.
+
+    Returns:
+        matplotlib.Axes: The result axes.
+        ndarray: The result image.
+    """
+    taken_colors = set([0, 0, 0])
+    if color is None:
+        random_colors = np.random.randint(0, 255, (masks.size(0), 3))
+        color = [tuple(c) for c in random_colors]
+        color = np.array(color, dtype=np.uint8)
+    polygons = []
+    for i, mask in enumerate(masks):
+        if with_edge:
+            contours, _ = bitmap_to_polygon(mask)
+            polygons += [Polygon(c) for c in contours]
+
+        color_mask = color[i]
+        while tuple(color_mask) in taken_colors:
+            color_mask = _get_bias_color(color_mask)
+        taken_colors.add(tuple(color_mask))
+
+        mask = mask.astype(bool)
+        img[mask] = img[mask] * (1 - alpha) + color_mask * alpha
+
+    p = PatchCollection(
+        polygons, facecolor='none', edgecolors='w', linewidths=1, alpha=0.8)
+    ax.add_collection(p)
+
+    return ax, img
+
+
 def imshow_det_bboxes(img,
-                      bboxes,
-                      labels,
+                      bboxes=None,
+                      labels=None,
                       segms=None,
                       class_names=None,
                       score_thr=0,
@@ -35,7 +213,7 @@ def imshow_det_bboxes(img,
                       text_color='green',
                       mask_color=None,
                       thickness=2,
-                      font_size=13,
+                      font_size=8,
                       win_name='',
                       show=True,
                       wait_time=0,
@@ -43,43 +221,51 @@ def imshow_det_bboxes(img,
     """Draw bboxes and class labels (with scores) on an image.
 
     Args:
-        img (str or ndarray): The image to be displayed.
+        img (str | ndarray): The image to be displayed.
         bboxes (ndarray): Bounding boxes (with scores), shaped (n, 4) or
             (n, 5).
         labels (ndarray): Labels of bboxes.
-        segms (ndarray or None): Masks, shaped (n,h,w) or None
+        segms (ndarray | None): Masks, shaped (n,h,w) or None.
         class_names (list[str]): Names of each classes.
-        score_thr (float): Minimum score of bboxes to be shown.  Default: 0
-        bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines.
-           The tuple of color should be in BGR order. Default: 'green'
-        text_color (str or tuple(int) or :obj:`Color`):Color of texts.
-           The tuple of color should be in BGR order. Default: 'green'
-        mask_color (str or tuple(int) or :obj:`Color`, optional):
-           Color of masks. The tuple of color should be in BGR order.
-           Default: None
-        thickness (int): Thickness of lines. Default: 2
-        font_size (int): Font size of texts. Default: 13
-        show (bool): Whether to show the image. Default: True
-        win_name (str): The window name. Default: ''
+        score_thr (float): Minimum score of bboxes to be shown. Default: 0.
+        bbox_color (list[tuple] | tuple | str | None): Colors of bbox lines.
+           If a single color is given, it will be applied to all classes.
+           The tuple of color should be in RGB order. Default: 'green'.
+        text_color (list[tuple] | tuple | str | None): Colors of texts.
+           If a single color is given, it will be applied to all classes.
+           The tuple of color should be in RGB order. Default: 'green'.
+        mask_color (list[tuple] | tuple | str | None, optional): Colors of
+           masks. If a single color is given, it will be applied to all
+           classes. The tuple of color should be in RGB order.
+           Default: None.
+        thickness (int): Thickness of lines. Default: 2.
+        font_size (int): Font size of texts. Default: 13.
+        show (bool): Whether to show the image. Default: True.
+        win_name (str): The window name. Default: ''.
         wait_time (float): Value of waitKey param. Default: 0.
         out_file (str, optional): The filename to write the image.
-            Default: None
+            Default: None.
 
     Returns:
         ndarray: The image with bboxes drawn on it.
     """
-    assert bboxes.ndim == 2, \
+    assert bboxes is None or bboxes.ndim == 2, \
         f' bboxes ndim should be 2, but its ndim is {bboxes.ndim}.'
     assert labels.ndim == 1, \
         f' labels ndim should be 1, but its ndim is {labels.ndim}.'
-    assert bboxes.shape[0] == labels.shape[0], \
-        'bboxes.shape[0] and labels.shape[0] should have the same length.'
-    assert bboxes.shape[1] == 4 or bboxes.shape[1] == 5, \
+    assert bboxes is None or bboxes.shape[1] == 4 or bboxes.shape[1] == 5, \
         f' bboxes.shape[1] should be 4 or 5, but its {bboxes.shape[1]}.'
+    assert bboxes is None or bboxes.shape[0] <= labels.shape[0], \
+        'labels.shape[0] should not be less than bboxes.shape[0].'
+    assert segms is None or segms.shape[0] == labels.shape[0], \
+        'segms.shape[0] and labels.shape[0] should have the same length.'
+    assert segms is not None or bboxes is not None, \
+        'segms and bboxes should not be None at the same time.'
+
     img = mmcv.imread(img).astype(np.uint8)
 
     if score_thr > 0:
-        assert bboxes.shape[1] == 5
+        assert bboxes is not None and bboxes.shape[1] == 5
         scores = bboxes[:, -1]
         inds = scores > score_thr
         bboxes = bboxes[inds, :]
@@ -87,25 +273,6 @@ def imshow_det_bboxes(img,
         if segms is not None:
             segms = segms[inds, ...]
 
-    mask_colors = []
-    if labels.shape[0] > 0:
-        if mask_color is None:
-            # random color
-            np.random.seed(42)
-            mask_colors = [
-                np.random.randint(0, 256, (1, 3), dtype=np.uint8)
-                for _ in range(max(labels) + 1)
-            ]
-        else:
-            # specify  color
-            mask_colors = [
-                np.array(mmcv.color_val(mask_color)[::-1], dtype=np.uint8)
-            ] * (
-                max(labels) + 1)
-
-    bbox_color = color_val_matplotlib(bbox_color)
-    text_color = color_val_matplotlib(text_color)
-
     img = mmcv.bgr2rgb(img)
     width, height = img.shape[1], img.shape[0]
     img = np.ascontiguousarray(img)
@@ -123,44 +290,64 @@ def imshow_det_bboxes(img,
     ax = plt.gca()
     ax.axis('off')
 
-    polygons = []
-    color = []
-    for i, (bbox, label) in enumerate(zip(bboxes, labels)):
-        bbox_int = bbox.astype(np.int32)
-        poly = [[bbox_int[0], bbox_int[1]], [bbox_int[0], bbox_int[3]],
-                [bbox_int[2], bbox_int[3]], [bbox_int[2], bbox_int[1]]]
-        np_poly = np.array(poly).reshape((4, 2))
-        polygons.append(Polygon(np_poly))
-        color.append(bbox_color)
-        label_text = class_names[
-            label] if class_names is not None else f'class {label}'
-        if len(bbox) > 4:
-            label_text += f'|{bbox[-1]:.02f}'
-        ax.text(
-            bbox_int[0],
-            bbox_int[1],
-            f'{label_text}',
-            bbox={
-                'facecolor': 'black',
-                'alpha': 0.8,
-                'pad': 0.7,
-                'edgecolor': 'none'
-            },
-            color=text_color,
-            fontsize=font_size,
-            verticalalignment='top',
-            horizontalalignment='left')
-        if segms is not None:
-            color_mask = mask_colors[labels[i]]
-            mask = segms[i].astype(bool)
-            img[mask] = img[mask] * 0.5 + color_mask * 0.5
+    max_label = int(max(labels) if len(labels) > 0 else 0)
+    text_palette = palette_val(get_palette(text_color, max_label + 1))
+    text_colors = [text_palette[label] for label in labels]
+
+    num_bboxes = 0
+    if bboxes is not None:
+        num_bboxes = bboxes.shape[0]
+        bbox_palette = palette_val(get_palette(bbox_color, max_label + 1))
+        colors = [bbox_palette[label] for label in labels[:num_bboxes]]
+        draw_bboxes(ax, bboxes, colors, alpha=0.8, thickness=thickness)
+
+        horizontal_alignment = 'left'
+        positions = bboxes[:, :2].astype(np.int32) + thickness
+        areas = (bboxes[:, 3] - bboxes[:, 1]) * (bboxes[:, 2] - bboxes[:, 0])
+        scales = _get_adaptive_scales(areas)
+        scores = bboxes[:, 4] if bboxes.shape[1] == 5 else None
+        draw_labels(
+            ax,
+            labels[:num_bboxes],
+            positions,
+            scores=scores,
+            class_names=class_names,
+            color=text_colors,
+            font_size=font_size,
+            scales=scales,
+            horizontal_alignment=horizontal_alignment)
+
+    if segms is not None:
+        mask_palette = get_palette(mask_color, max_label + 1)
+        colors = [mask_palette[label] for label in labels]
+        colors = np.array(colors, dtype=np.uint8)
+        draw_masks(ax, img, segms, colors, with_edge=True)
+
+        if num_bboxes < segms.shape[0]:
+            segms = segms[num_bboxes:]
+            horizontal_alignment = 'center'
+            areas = []
+            positions = []
+            for mask in segms:
+                _, _, stats, centroids = cv2.connectedComponentsWithStats(
+                    mask.astype(np.uint8), connectivity=8)
+                largest_id = np.argmax(stats[1:, -1]) + 1
+                positions.append(centroids[largest_id])
+                areas.append(stats[largest_id, -1])
+            areas = np.stack(areas, axis=0)
+            scales = _get_adaptive_scales(areas)
+            draw_labels(
+                ax,
+                labels[num_bboxes:],
+                positions,
+                class_names=class_names,
+                color=text_colors,
+                font_size=font_size,
+                scales=scales,
+                horizontal_alignment=horizontal_alignment)
 
     plt.imshow(img)
 
-    p = PatchCollection(
-        polygons, facecolor='none', edgecolors=color, linewidths=thickness)
-    ax.add_collection(p)
-
     stream, _ = canvas.print_to_buffer()
     buffer = np.frombuffer(stream, dtype='uint8')
     img_rgba = buffer.reshape(height, width, 4)
@@ -191,12 +378,12 @@ def imshow_gt_det_bboxes(img,
                          result,
                          class_names=None,
                          score_thr=0,
-                         gt_bbox_color=(255, 102, 61),
-                         gt_text_color=(255, 102, 61),
-                         gt_mask_color=(255, 102, 61),
-                         det_bbox_color=(72, 101, 241),
-                         det_text_color=(72, 101, 241),
-                         det_mask_color=(72, 101, 241),
+                         gt_bbox_color=(61, 102, 255),
+                         gt_text_color=(200, 200, 200),
+                         gt_mask_color=(61, 102, 255),
+                         det_bbox_color=(241, 101, 72),
+                         det_text_color=(200, 200, 200),
+                         det_mask_color=(241, 101, 72),
                          thickness=2,
                          font_size=13,
                          win_name='',
@@ -206,54 +393,75 @@ def imshow_gt_det_bboxes(img,
     """General visualization GT and result function.
 
     Args:
-      img (str or ndarray): The image to be displayed.)
+      img (str | ndarray): The image to be displayed.
       annotation (dict): Ground truth annotations where contain keys of
-          'gt_bboxes' and 'gt_labels' or 'gt_masks'
-      result (tuple[list] or list): The detection result, can be either
+          'gt_bboxes' and 'gt_labels' or 'gt_masks'.
+      result (tuple[list] | list): The detection result, can be either
           (bbox, segm) or just bbox.
       class_names (list[str]): Names of each classes.
-      score_thr (float): Minimum score of bboxes to be shown.  Default: 0
-      gt_bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines.
-           The tuple of color should be in BGR order. Default: (255, 102, 61)
-      gt_text_color (str or tuple(int) or :obj:`Color`):Color of texts.
-           The tuple of color should be in BGR order. Default: (255, 102, 61)
-      gt_mask_color (str or tuple(int) or :obj:`Color`, optional):
-           Color of masks. The tuple of color should be in BGR order.
-           Default: (255, 102, 61)
-      det_bbox_color (str or tuple(int) or :obj:`Color`):Color of bbox lines.
-           The tuple of color should be in BGR order. Default: (72, 101, 241)
-      det_text_color (str or tuple(int) or :obj:`Color`):Color of texts.
-           The tuple of color should be in BGR order. Default: (72, 101, 241)
-      det_mask_color (str or tuple(int) or :obj:`Color`, optional):
-           Color of masks. The tuple of color should be in BGR order.
-           Default: (72, 101, 241)
-      thickness (int): Thickness of lines. Default: 2
-      font_size (int): Font size of texts. Default: 13
-      win_name (str): The window name. Default: ''
-      show (bool): Whether to show the image. Default: True
+      score_thr (float): Minimum score of bboxes to be shown. Default: 0.
+      gt_bbox_color (list[tuple] | tuple | str | None): Colors of bbox lines.
+          If a single color is given, it will be applied to all classes.
+          The tuple of color should be in RGB order. Default: (61, 102, 255).
+      gt_text_color (list[tuple] | tuple | str | None): Colors of texts.
+          If a single color is given, it will be applied to all classes.
+          The tuple of color should be in RGB order. Default: (200, 200, 200).
+      gt_mask_color (list[tuple] | tuple | str | None, optional): Colors of
+          masks. If a single color is given, it will be applied to all classes.
+          The tuple of color should be in RGB order. Default: (61, 102, 255).
+      det_bbox_color (list[tuple] | tuple | str | None):Colors of bbox lines.
+          If a single color is given, it will be applied to all classes.
+          The tuple of color should be in RGB order. Default: (241, 101, 72).
+      det_text_color (list[tuple] | tuple | str | None):Colors of texts.
+          If a single color is given, it will be applied to all classes.
+          The tuple of color should be in RGB order. Default: (200, 200, 200).
+      det_mask_color (list[tuple] | tuple | str | None, optional): Color of
+          masks. If a single color is given, it will be applied to all classes.
+          The tuple of color should be in RGB order. Default: (241, 101, 72).
+      thickness (int): Thickness of lines. Default: 2.
+      font_size (int): Font size of texts. Default: 13.
+      win_name (str): The window name. Default: ''.
+      show (bool): Whether to show the image. Default: True.
       wait_time (float): Value of waitKey param. Default: 0.
       out_file (str, optional): The filename to write the image.
-         Default: None
+          Default: None.
 
     Returns:
         ndarray: The image with bboxes or masks drawn on it.
     """
     assert 'gt_bboxes' in annotation
     assert 'gt_labels' in annotation
-    assert isinstance(
-        result,
-        (tuple, list)), f'Expected tuple or list, but get {type(result)}'
+    assert isinstance(result, (tuple, list, dict)), 'Expected ' \
+        f'tuple or list or dict, but get {type(result)}'
 
+    gt_bboxes = annotation['gt_bboxes']
+    gt_labels = annotation['gt_labels']
     gt_masks = annotation.get('gt_masks', None)
     if gt_masks is not None:
         gt_masks = mask2ndarray(gt_masks)
 
+    gt_seg = annotation.get('gt_semantic_seg', None)
+    if gt_seg is not None:
+        pad_value = 255  # the padding value of gt_seg
+        sem_labels = np.unique(gt_seg)
+        all_labels = np.concatenate((gt_labels, sem_labels), axis=0)
+        all_labels, counts = np.unique(all_labels, return_counts=True)
+        stuff_labels = all_labels[np.logical_and(counts < 2,
+                                                 all_labels != pad_value)]
+        stuff_masks = gt_seg[None] == stuff_labels[:, None, None]
+        gt_labels = np.concatenate((gt_labels, stuff_labels), axis=0)
+        gt_masks = np.concatenate((gt_masks, stuff_masks.astype(np.uint8)),
+                                  axis=0)
+        # If you need to show the bounding boxes,
+        # please comment the following line
+        # gt_bboxes = None
+
     img = mmcv.imread(img)
 
     img = imshow_det_bboxes(
         img,
-        annotation['gt_bboxes'],
-        annotation['gt_labels'],
+        gt_bboxes,
+        gt_labels,
         gt_masks,
         class_names=class_names,
         bbox_color=gt_bbox_color,
@@ -264,25 +472,38 @@ def imshow_gt_det_bboxes(img,
         win_name=win_name,
         show=False)
 
-    if isinstance(result, tuple):
-        bbox_result, segm_result = result
-        if isinstance(segm_result, tuple):
-            segm_result = segm_result[0]  # ms rcnn
+    if not isinstance(result, dict):
+        if isinstance(result, tuple):
+            bbox_result, segm_result = result
+            if isinstance(segm_result, tuple):
+                segm_result = segm_result[0]  # ms rcnn
+        else:
+            bbox_result, segm_result = result, None
+
+        bboxes = np.vstack(bbox_result)
+        labels = [
+            np.full(bbox.shape[0], i, dtype=np.int32)
+            for i, bbox in enumerate(bbox_result)
+        ]
+        labels = np.concatenate(labels)
+
+        segms = None
+        if segm_result is not None and len(labels) > 0:  # non empty
+            segms = mmcv.concat_list(segm_result)
+            segms = mask_util.decode(segms)
+            segms = segms.transpose(2, 0, 1)
     else:
-        bbox_result, segm_result = result, None
-
-    bboxes = np.vstack(bbox_result)
-    labels = [
-        np.full(bbox.shape[0], i, dtype=np.int32)
-        for i, bbox in enumerate(bbox_result)
-    ]
-    labels = np.concatenate(labels)
-
-    segms = None
-    if segm_result is not None and len(labels) > 0:  # non empty
-        segms = mmcv.concat_list(segm_result)
-        segms = mask_util.decode(segms)
-        segms = segms.transpose(2, 0, 1)
+        assert class_names is not None, 'We need to know the number ' \
+                                        'of classes.'
+        VOID = len(class_names)
+        bboxes = None
+        pan_results = result['pan_results']
+        # keep objects ahead
+        ids = np.unique(pan_results)[::-1]
+        legal_indices = ids != VOID
+        ids = ids[legal_indices]
+        labels = np.array([id % INSTANCE_OFFSET for id in ids], dtype=np.int64)
+        segms = (pan_results[None] == ids[:, None, None])
 
     img = imshow_det_bboxes(
         img,