Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
from __future__ import annotations | |
import argparse | |
import os | |
import pathlib | |
import subprocess | |
import sys | |
if os.getenv('SYSTEM') == 'spaces': | |
import mim | |
mim.uninstall('mmcv-full', confirm_yes=True) | |
mim.install('mmcv-full==1.5.0', is_yes=True) | |
subprocess.run('pip uninstall -y opencv-python'.split()) | |
subprocess.run('pip uninstall -y opencv-python-headless'.split()) | |
subprocess.run('pip install opencv-python-headless==4.5.5.64'.split()) | |
with open('patch') as f: | |
subprocess.run('patch -p1'.split(), cwd='CBNetV2', stdin=f) | |
subprocess.run('mv palette.py CBNetV2/mmdet/core/visualization/'.split()) | |
import gradio as gr | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
sys.path.insert(0, 'CBNetV2/') | |
from mmdet.apis import inference_detector, init_detector | |
DESCRIPTION = '''# CBNetV2 | |
This is an unofficial demo for [https://github.com/VDIGPKU/CBNetV2](https://github.com/VDIGPKU/CBNetV2).''' | |
FOOTER = '<img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=hysts.cbnetv2" />' | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument('--theme', type=str) | |
parser.add_argument('--share', action='store_true') | |
parser.add_argument('--port', type=int) | |
parser.add_argument('--disable-queue', | |
dest='enable_queue', | |
action='store_false') | |
return parser.parse_args() | |
class Model: | |
def __init__(self, device: str | torch.device): | |
self.device = torch.device(device) | |
self.models = self._load_models() | |
self.model_name = 'Improved HTC (DB-Swin-B)' | |
def _load_models(self) -> dict[str, nn.Module]: | |
model_dict = { | |
'Faster R-CNN (DB-ResNet50)': { | |
'config': | |
'CBNetV2/configs/cbnet/faster_rcnn_cbv2d1_r50_fpn_1x_coco.py', | |
'model': | |
'https://github.com/CBNetwork/storage/releases/download/v1.0.0/faster_rcnn_cbv2d1_r50_fpn_1x_coco.pth.zip', | |
}, | |
'Mask R-CNN (DB-Swin-T)': { | |
'config': | |
'CBNetV2/configs/cbnet/mask_rcnn_cbv2_swin_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco.py', | |
'model': | |
'https://github.com/CBNetwork/storage/releases/download/v1.0.0/mask_rcnn_cbv2_swin_tiny_patch4_window7_mstrain_480-800_adamw_3x_coco.pth.zip', | |
}, | |
# 'Cascade Mask R-CNN (DB-Swin-S)': { | |
# 'config': | |
# 'CBNetV2/configs/cbnet/cascade_mask_rcnn_cbv2_swin_small_patch4_window7_mstrain_400-1400_adamw_3x_coco.py', | |
# 'model': | |
# 'https://github.com/CBNetwork/storage/releases/download/v1.0.0/cascade_mask_rcnn_cbv2_swin_small_patch4_window7_mstrain_400-1400_adamw_3x_coco.pth.zip', | |
# }, | |
'Improved HTC (DB-Swin-B)': { | |
'config': | |
'CBNetV2/configs/cbnet/htc_cbv2_swin_base_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_20e_coco.py', | |
'model': | |
'https://github.com/CBNetwork/storage/releases/download/v1.0.0/htc_cbv2_swin_base22k_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_20e_coco.pth.zip', | |
}, | |
'Improved HTC (DB-Swin-L)': { | |
'config': | |
'CBNetV2/configs/cbnet/htc_cbv2_swin_large_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.py', | |
'model': | |
'https://github.com/CBNetwork/storage/releases/download/v1.0.0/htc_cbv2_swin_large22k_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.pth.zip', | |
}, | |
'Improved HTC (DB-Swin-L (TTA))': { | |
'config': | |
'CBNetV2/configs/cbnet/htc_cbv2_swin_large_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.py', | |
'model': | |
'https://github.com/CBNetwork/storage/releases/download/v1.0.0/htc_cbv2_swin_large22k_patch4_window7_mstrain_400-1400_giou_4conv1f_adamw_1x_coco.pth.zip', | |
}, | |
} | |
weight_dir = pathlib.Path('weights') | |
weight_dir.mkdir(exist_ok=True) | |
def _download(model_name: str, out_dir: pathlib.Path) -> None: | |
import zipfile | |
model_url = model_dict[model_name]['model'] | |
zip_name = model_url.split('/')[-1] | |
out_path = out_dir / zip_name | |
if out_path.exists(): | |
return | |
torch.hub.download_url_to_file(model_url, out_path) | |
with zipfile.ZipFile(out_path) as f: | |
f.extractall(out_dir) | |
def _get_model_path(model_name: str) -> str: | |
model_url = model_dict[model_name]['model'] | |
model_name = model_url.split('/')[-1][:-4] | |
return (weight_dir / model_name).as_posix() | |
for model_name in model_dict: | |
_download(model_name, weight_dir) | |
models = { | |
key: init_detector(dic['config'], | |
_get_model_path(key), | |
device=self.device) | |
for key, dic in model_dict.items() | |
} | |
return models | |
def set_model_name(self, name: str) -> None: | |
self.model_name = name | |
def detect_and_visualize( | |
self, image: np.ndarray, | |
score_threshold: float) -> tuple[list[np.ndarray], np.ndarray]: | |
out = self.detect(image) | |
vis = self.visualize_detection_results(image, out, score_threshold) | |
return out, vis | |
def detect(self, image: np.ndarray) -> list[np.ndarray]: | |
image = image[:, :, ::-1] # RGB -> BGR | |
model = self.models[self.model_name] | |
out = inference_detector(model, image) | |
return out | |
def visualize_detection_results( | |
self, | |
image: np.ndarray, | |
detection_results: list[np.ndarray], | |
score_threshold: float = 0.3) -> np.ndarray: | |
image = image[:, :, ::-1] # RGB -> BGR | |
model = self.models[self.model_name] | |
vis = model.show_result(image, | |
detection_results, | |
score_thr=score_threshold, | |
bbox_color=None, | |
text_color=(200, 200, 200), | |
mask_color=None) | |
return vis[:, :, ::-1] # BGR -> RGB | |
def set_example_image(example: list) -> dict: | |
return gr.Image.update(value=example[0]) | |
def main(): | |
args = parse_args() | |
model = Model(args.device) | |
with gr.Blocks(theme=args.theme, css='style.css') as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
input_image = gr.Image(label='Input Image', type='numpy') | |
with gr.Row(): | |
detector_name = gr.Dropdown(list(model.models.keys()), | |
value=model.model_name, | |
label='Detector') | |
with gr.Row(): | |
detect_button = gr.Button(value='Detect') | |
detection_results = gr.Variable() | |
with gr.Column(): | |
with gr.Row(): | |
detection_visualization = gr.Image( | |
label='Detection Result', type='numpy') | |
with gr.Row(): | |
visualization_score_threshold = gr.Slider( | |
0, | |
1, | |
step=0.05, | |
value=0.3, | |
label='Visualization Score Threshold') | |
with gr.Row(): | |
redraw_button = gr.Button(value='Redraw') | |
with gr.Row(): | |
paths = sorted(pathlib.Path('images').rglob('*.jpg')) | |
example_images = gr.Dataset(components=[input_image], | |
samples=[[path.as_posix()] | |
for path in paths]) | |
gr.Markdown(FOOTER) | |
detector_name.change(fn=model.set_model_name, | |
inputs=[detector_name], | |
outputs=None) | |
detect_button.click(fn=model.detect_and_visualize, | |
inputs=[ | |
input_image, | |
visualization_score_threshold, | |
], | |
outputs=[ | |
detection_results, | |
detection_visualization, | |
]) | |
redraw_button.click(fn=model.visualize_detection_results, | |
inputs=[ | |
input_image, | |
detection_results, | |
visualization_score_threshold, | |
], | |
outputs=[detection_visualization]) | |
example_images.click(fn=set_example_image, | |
inputs=[example_images], | |
outputs=[input_image]) | |
demo.launch( | |
enable_queue=args.enable_queue, | |
server_port=args.port, | |
share=args.share, | |
) | |
if __name__ == '__main__': | |
main() | |