#!/usr/bin/env python from __future__ import annotations import os import pathlib import shlex import subprocess if os.getenv("SYSTEM") == "spaces": subprocess.run(shlex.split("pip install click==7.1.2")) subprocess.run(shlex.split("pip install typer==0.9.4")) import mim mim.uninstall("mmcv-full", confirm_yes=True) mim.install("mmcv-full==1.5.0", is_yes=True) subprocess.run(shlex.split("pip uninstall -y opencv-python")) subprocess.run(shlex.split("pip uninstall -y opencv-python-headless")) subprocess.run(shlex.split("pip install opencv-python-headless==4.8.0.74")) with open("patch") as f: subprocess.run(shlex.split("patch -p1"), cwd="CBNetV2", stdin=f) subprocess.run("mv palette.py CBNetV2/mmdet/core/visualization/".split()) import gradio as gr from model import Model DESCRIPTION = "# [CBNetV2](https://github.com/VDIGPKU/CBNetV2)" model = Model() with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Row(): with gr.Column(): with gr.Row(): input_image = gr.Image(label="Input Image", type="numpy") with gr.Row(): detector_name = gr.Dropdown( label="Detector", choices=list(model.models.keys()), value=model.model_name ) with gr.Row(): detect_button = gr.Button("Detect") detection_results = gr.State() with gr.Column(): with gr.Row(): detection_visualization = gr.Image(label="Detection Result", type="numpy") with gr.Row(): visualization_score_threshold = gr.Slider( label="Visualization Score Threshold", minimum=0, maximum=1, step=0.05, value=0.3 ) with gr.Row(): redraw_button = gr.Button("Redraw") with gr.Row(): paths = sorted(pathlib.Path("images").rglob("*.jpg")) gr.Examples(examples=[[path.as_posix()] for path in paths], inputs=input_image) detector_name.change(fn=model.set_model_name, inputs=detector_name) detect_button.click( fn=model.detect_and_visualize, inputs=[ input_image, visualization_score_threshold, ], outputs=[ detection_results, detection_visualization, ], ) redraw_button.click( fn=model.visualize_detection_results, inputs=[ input_image, detection_results, visualization_score_threshold, ], outputs=detection_visualization, ) if __name__ == "__main__": demo.queue(max_size=10).launch()