SuperSecureHuman commited on
Commit
df6d6c1
1 Parent(s): 7830bee

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -23
app.py CHANGED
@@ -105,41 +105,24 @@ def process_image(img):
105
  return (lowres, preds)
106
 
107
  image = gr.inputs.Image()
108
- image_out = gr.outputs.Image()
109
 
110
  markdown_part = """
111
 
112
- This space is the demo for the EDSR (Enhanced Deep Residual Networks for Single Image Super-Resolution) model. This model surpassed the performace of the current available SOTA models.
113
 
114
- Paper Link - https://arxiv.org/pdf/1707.02921
115
-
116
- Keras Example link - https://keras.io/examples/vision/edsr/
117
-
118
-
119
- TODO:
120
-
121
- Hack to make this work for any image size. Currently the model takes input of image size 150 x 150.
122
-
123
- We pad the input image with transparent pixels so that it is a square image, which is a multiple of 150 x 150
124
-
125
- Then we chop the image into multiple 150 x 150 sub images
126
-
127
- Upscale it and stitch it together.
128
-
129
- The output image might look a bit off, because each sub-image dosent have data about other sub-images.
130
-
131
- This approach assumes that the subimage has enough data about its surroundings
132
  """
133
 
134
-
135
 
136
  gr.Interface(
137
  process_image,
138
  title="EDSR - Enhanced Deep Residual Networks for Single Image Super-Resolution",
139
  description="SuperResolution",
140
  inputs = image,
141
- outputs = gr.Gallery(label="Outputs, First image is low res, next one is High Res",visible=True),
 
142
  article = markdown_part,
143
  interpretation='default',
144
  allow_flagging='never'
145
- ).launch()
 
105
  return (lowres, preds)
106
 
107
  image = gr.inputs.Image()
108
+ #image_out = gr.outputs.Image()
109
 
110
  markdown_part = """
111
 
112
+ Model Link - https://huggingface.co/keras-io/EDSR
113
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
  """
115
 
116
+ examples = [["./examples/1.png"]]
117
 
118
  gr.Interface(
119
  process_image,
120
  title="EDSR - Enhanced Deep Residual Networks for Single Image Super-Resolution",
121
  description="SuperResolution",
122
  inputs = image,
123
+ examples = examples,
124
+ outputs = gr.Gallery(label="Outputs, First image is low res, next one is High Res",visible=True).style(grid=[2], height="auto"),
125
  article = markdown_part,
126
  interpretation='default',
127
  allow_flagging='never'
128
+ ).launch(debug=True)