Spaces:
Running
Running
from __future__ import annotations | |
import argparse | |
import os | |
import pathlib | |
import subprocess | |
import sys | |
from typing import Callable, Union | |
import dlib | |
import huggingface_hub | |
import numpy as np | |
import PIL.Image | |
import torch | |
import torch.nn as nn | |
import torchvision.transforms as T | |
if os.getenv("SYSTEM") == "spaces" and not torch.cuda.is_available(): | |
with open("patch.e4e") as f: | |
subprocess.run("patch -p1".split(), cwd="encoder4editing", stdin=f) | |
with open("patch.hairclip") as f: | |
subprocess.run("patch -p1".split(), cwd="HairCLIP", stdin=f) | |
app_dir = pathlib.Path(__file__).parent | |
e4e_dir = app_dir / "encoder4editing" | |
sys.path.insert(0, e4e_dir.as_posix()) | |
from models.psp import pSp | |
from utils.alignment import align_face | |
hairclip_dir = app_dir / "HairCLIP" | |
mapper_dir = hairclip_dir / "mapper" | |
sys.path.insert(0, hairclip_dir.as_posix()) | |
sys.path.insert(0, mapper_dir.as_posix()) | |
from mapper.datasets.latents_dataset_inference import LatentsDatasetInference | |
from mapper.hairclip_mapper import HairCLIPMapper | |
class Model: | |
def __init__(self): | |
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
self.landmark_model = self._create_dlib_landmark_model() | |
self.e4e = self._load_e4e() | |
self.hairclip = self._load_hairclip() | |
self.transform = self._create_transform() | |
def _create_dlib_landmark_model(): | |
path = huggingface_hub.hf_hub_download( | |
"public-data/dlib_face_landmark_model", "shape_predictor_68_face_landmarks.dat" | |
) | |
return dlib.shape_predictor(path) | |
def _load_e4e(self) -> nn.Module: | |
ckpt_path = huggingface_hub.hf_hub_download("public-data/e4e", "e4e_ffhq_encode.pt") | |
ckpt = torch.load(ckpt_path, map_location="cpu") | |
opts = ckpt["opts"] | |
opts["device"] = self.device.type | |
opts["checkpoint_path"] = ckpt_path | |
opts = argparse.Namespace(**opts) | |
model = pSp(opts) | |
model.to(self.device) | |
model.eval() | |
return model | |
def _load_hairclip(self) -> nn.Module: | |
ckpt_path = huggingface_hub.hf_hub_download("public-data/HairCLIP", "hairclip.pt") | |
ckpt = torch.load(ckpt_path, map_location="cpu") | |
opts = ckpt["opts"] | |
opts["device"] = self.device.type | |
opts["checkpoint_path"] = ckpt_path | |
opts["editing_type"] = "both" | |
opts["input_type"] = "text" | |
opts["hairstyle_description"] = "HairCLIP/mapper/hairstyle_list.txt" | |
opts["color_description"] = "red" | |
opts = argparse.Namespace(**opts) | |
model = HairCLIPMapper(opts) | |
model.to(self.device) | |
model.eval() | |
return model | |
def _create_transform() -> Callable: | |
transform = T.Compose( | |
[ | |
T.Resize(256), | |
T.CenterCrop(256), | |
T.ToTensor(), | |
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), | |
] | |
) | |
return transform | |
def detect_and_align_face(self, image: str) -> PIL.Image.Image: | |
image = align_face(filepath=image, predictor=self.landmark_model) | |
return image | |
def denormalize(tensor: torch.Tensor) -> torch.Tensor: | |
return torch.clamp((tensor + 1) / 2 * 255, 0, 255).to(torch.uint8) | |
def postprocess(self, tensor: torch.Tensor) -> np.ndarray: | |
tensor = self.denormalize(tensor) | |
return tensor.cpu().numpy().transpose(1, 2, 0) | |
def reconstruct_face(self, image: PIL.Image.Image) -> tuple[np.ndarray, torch.Tensor]: | |
input_data = self.transform(image).unsqueeze(0).to(self.device) | |
reconstructed_images, latents = self.e4e(input_data, randomize_noise=False, return_latents=True) | |
reconstructed = torch.clamp(reconstructed_images[0].detach(), -1, 1) | |
reconstructed = self.postprocess(reconstructed) | |
return reconstructed, latents[0] | |
def generate( | |
self, editing_type: str, hairstyle_index: int, color_description: str, latent: torch.Tensor | |
) -> np.ndarray: | |
opts = self.hairclip.opts | |
opts.editing_type = editing_type | |
opts.color_description = color_description | |
if editing_type == "color": | |
hairstyle_index = 0 | |
device = torch.device(opts.device) | |
dataset = LatentsDatasetInference(latents=latent.unsqueeze(0).cpu(), opts=opts) | |
w, hairstyle_text_inputs_list, color_text_inputs_list = dataset[0][:3] | |
w = w.unsqueeze(0).to(device) | |
hairstyle_text_inputs = hairstyle_text_inputs_list[hairstyle_index].unsqueeze(0).to(device) | |
color_text_inputs = color_text_inputs_list[0].unsqueeze(0).to(device) | |
hairstyle_tensor_hairmasked = torch.Tensor([0]).unsqueeze(0).to(device) | |
color_tensor_hairmasked = torch.Tensor([0]).unsqueeze(0).to(device) | |
w_hat = w + 0.1 * self.hairclip.mapper( | |
w, | |
hairstyle_text_inputs, | |
color_text_inputs, | |
hairstyle_tensor_hairmasked, | |
color_tensor_hairmasked, | |
) | |
x_hat, _ = self.hairclip.decoder( | |
[w_hat], | |
input_is_latent=True, | |
return_latents=True, | |
randomize_noise=False, | |
truncation=1, | |
) | |
res = torch.clamp(x_hat[0].detach(), -1, 1) | |
res = self.postprocess(res) | |
return res | |