Henry Lydecker commited on
Commit
d70cad8
1 Parent(s): e7a6f18

Add Alphav1 application file

Browse files
Files changed (1) hide show
  1. app.py +33 -0
app.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Are you wearing a mask?
2
+ import gradio as gr
3
+ import torch
4
+ import torchvision
5
+ import numpy as np
6
+ from PIL import Image
7
+
8
+ # Face masks
9
+ model = torch.hub.load('ultralytics/yolov5', 'custom', "model_weights/face_masks_full.pt")
10
+
11
+ # Animals
12
+ # model = torch.hub.load('ultralytics/yolov5', 'custom', "model_weights/datasets_1000_41class.pt",force_reload=True)
13
+
14
+
15
+
16
+ def yolo(im, size=640):
17
+ g = (size / max(im.size)) # gain
18
+ im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize
19
+
20
+ results = model(im) # inference
21
+ results.render() # updates results.imgs with boxes and labels
22
+ return Image.fromarray(results.imgs[0])
23
+
24
+
25
+ inputs = gr.inputs.Image(type='pil', label="Original Image")
26
+ outputs = gr.outputs.Image(type="pil", label="Output Image")
27
+
28
+ title = "Detecting masked and unmasked faces with YOLOv5"
29
+ description = "YOLOv5 Gradio demo for finding faces with and without masks, using object detection. Upload an image or click an example image to use."
30
+ article = "<p style='text-align: center'>YOLOv5 is a family of compound-scaled object detection models trained on the COCO dataset, and includes simple functionality for Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite. <a href='https://github.com/ultralytics/yolov5'>Source code</a> | <a href='https://pytorch.org/hub/ultralytics_yolov5'>PyTorch Hub</a></p>"
31
+
32
+ examples = [['data/picard.jpg'], ['data/stockmasks.jpg'],['data/batman.png']]
33
+ gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, theme="huggingface").launch(cache_examples=True,enable_queue=True)