# Are you wearing a mask? import gradio as gr import torch import torchvision import numpy as np from PIL import Image # Face masks model = torch.hub.load('ultralytics/yolov5', 'custom', "model_weights/face_masks_full.pt") # Animals # model = torch.hub.load('ultralytics/yolov5', 'custom', "model_weights/datasets_1000_41class.pt",force_reload=True) def yolo(im, size=640): g = (size / max(im.size)) # gain im = im.resize((int(x * g) for x in im.size), Image.ANTIALIAS) # resize results = model(im) # inference results.render() # updates results.imgs with boxes and labels return Image.fromarray(results.imgs[0]) inputs = gr.inputs.Image(type='pil', label="Original Image") outputs = gr.outputs.Image(type="pil", label="Output Image") title = "Detecting masked and unmasked faces with YOLOv5" description = "YOLOv5 Gradio demo for finding faces with and without masks, using object detection. Upload an image or click an example image to use." article = "
YOLOv5 is a family of compound-scaled object detection models trained on the COCO dataset, and includes simple functionality for Test Time Augmentation (TTA), model ensembling, hyperparameter evolution, and export to ONNX, CoreML and TFLite. Source code | PyTorch Hub
" examples = [['data/picard.jpg'], ['data/stockmasks.jpg'],['data/batman.png']] gr.Interface(yolo, inputs, outputs, title=title, description=description, article=article, examples=examples, theme="huggingface").launch(cache_examples=True,enable_queue=True)