File size: 16,980 Bytes
f1c8a72
 
f78ba33
1fe68a8
f78ba33
6ca354c
f78ba33
1fe68a8
f78ba33
 
 
4ea051a
f78ba33
d01498c
f78ba33
 
 
a3f9a3d
549e82e
4ea051a
4c3f79a
7ec4ca8
549e82e
0c3c182
f78ba33
b9ecc46
 
f78ba33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
446c19d
f78ba33
 
 
 
 
 
 
 
 
 
 
 
 
780cc53
f78ba33
 
 
 
 
 
 
 
02a1c15
5889003
4e89be8
05564bf
f78ba33
 
 
 
 
5889003
 
 
f78ba33
 
99b4ce0
05564bf
914ed63
05564bf
 
 
f78ba33
bacdb79
02a1c15
f78ba33
4ea051a
f78ba33
 
 
 
 
7d6b1fd
f78ba33
 
 
 
 
 
 
 
 
 
 
 
 
 
05564bf
914ed63
 
ea2d2e8
 
 
f78ba33
 
 
4404556
f78ba33
 
05564bf
f78ba33
 
9bd7549
 
5ceafaf
e6f46d3
cbda9bd
e6f46d3
9bd7549
f78ba33
 
 
 
 
05564bf
d6bb046
f78ba33
 
753ea40
 
 
 
 
 
 
042fbee
753ea40
042fbee
 
 
 
f78ba33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82648e3
 
f78ba33
 
 
 
 
 
 
e6f46d3
f78ba33
 
 
 
b805158
f78ba33
 
51b5cd7
f78ba33
 
5889003
dc3c197
5889003
 
e6f46d3
446c19d
 
9bd7549
5889003
ac4779d
f78ba33
 
e6f46d3
f78ba33
 
 
 
 
 
 
 
 
 
 
e6f46d3
f78ba33
b345f06
f78ba33
b345f06
 
 
 
 
f78ba33
e6f46d3
f78ba33
 
1a462a1
446c19d
f78ba33
71dd306
d6bb046
f78ba33
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
import gradio as gr

import numpy as np

import os
import ray
import matplotlib

matplotlib.use("Agg")
import matplotlib.pyplot as plt
from transformers import pipeline as pl
from GPUtil import showUtilization as gpu_usage

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sys
import plotly.graph_objects as go
import torch
import gc
import jax
from numba import cuda
print('GPU available',torch.cuda.is_available())
#print('__CUDA Device Name:',torch.cuda.get_device_name(0))
print(os.getcwd())
if "/home/user/app/alphafold" not in sys.path:
    sys.path.append("/home/user/app/alphafold")

from alphafold.common import protein
from alphafold.data import pipeline
from alphafold.data import templates
from alphafold.model import data
from alphafold.model import config
from alphafold.model import model


def mk_mock_template(query_sequence):
    """create blank template"""
    ln = len(query_sequence)
    output_templates_sequence = "-" * ln
    templates_all_atom_positions = np.zeros(
        (ln, templates.residue_constants.atom_type_num, 3)
    )
    templates_all_atom_masks = np.zeros((ln, templates.residue_constants.atom_type_num))
    templates_aatype = templates.residue_constants.sequence_to_onehot(
        output_templates_sequence, templates.residue_constants.HHBLITS_AA_TO_ID
    )
    template_features = {
        "template_all_atom_positions": templates_all_atom_positions[None],
        "template_all_atom_masks": templates_all_atom_masks[None],
        "template_aatype": np.array(templates_aatype)[None],
        "template_domain_names": [f"none".encode()],
    }
    return template_features


def predict_structure(prefix, feature_dict, model_runners, random_seed=0):
    """Predicts structure using AlphaFold for the given sequence."""

    # Run the models.
    # currently we only run model1
    plddts = {}
    for model_name, model_runner in model_runners.items():
        processed_feature_dict = model_runner.process_features(
            feature_dict, random_seed=random_seed
        )
        prediction_result = model_runner.predict(processed_feature_dict)
        b_factors = (
            prediction_result["plddt"][:, None]
            * prediction_result["structure_module"]["final_atom_mask"]
        )
        unrelaxed_protein = protein.from_prediction(
            processed_feature_dict, prediction_result, b_factors
        )
        unrelaxed_pdb_path = f"/home/user/app/{prefix}_unrelaxed_{model_name}.pdb"
        plddts[model_name] = prediction_result["plddt"]

        print(f"{model_name} {plddts[model_name].mean()}")

        with open(unrelaxed_pdb_path, "w") as f:
            f.write(protein.to_pdb(unrelaxed_protein))
    return plddts

@ray.remote(num_gpus=0, max_calls=1)
def run_protgpt2(startsequence, length, repetitionPenalty, top_k_poolsize, max_seqs):
    print("running protgpt2")
    print(gpu_usage())
    protgpt2 = pl("text-generation", model="nferruz/ProtGPT2")
    sequences = protgpt2(
        startsequence,
        max_length=length,
        do_sample=True,
        top_k=top_k_poolsize,
        repetition_penalty=repetitionPenalty,
        num_return_sequences=max_seqs,
        eos_token_id=0,
    )
    print("Cleaning up after protGPT2")
    #print(gpu_usage())
    #torch.cuda.empty_cache()
    #device = cuda.get_current_device()
    #device.reset()
    #print(gpu_usage())
    return sequences
    
@ray.remote(num_gpus=0, max_calls=1)
def run_alphafold(startsequence):
    print(gpu_usage())
    model_runners = {}
    models = ["model_1"]  # ,"model_2","model_3","model_4","model_5"]
    for model_name in models:
        model_config = config.model_config(model_name)
        model_config.data.eval.num_ensemble = 1
        model_params = data.get_model_haiku_params(model_name=model_name, data_dir="/home/user/app/")
        model_runner = model.RunModel(model_config, model_params)
        model_runners[model_name] = model_runner
    query_sequence = startsequence.replace("\n", "")

    feature_dict = {
        **pipeline.make_sequence_features(
            sequence=query_sequence, description="none", num_res=len(query_sequence)
        ),
        **pipeline.make_msa_features(
            msas=[[query_sequence]], deletion_matrices=[[[0] * len(query_sequence)]]
        ),
        **mk_mock_template(query_sequence),
    }
    plddts = predict_structure("test", feature_dict, model_runners)
    print("AF2 done")
    #backend = jax.lib.xla_bridge.get_backend()
    #for buf in backend.live_buffers(): buf.delete()
    #device = cuda.get_current_device()
    #device.reset()
    #print(gpu_usage())
    return plddts["model_1"]


def update_protGPT2(inp, length,repetitionPenalty, top_k_poolsize, max_seqs):
    startsequence = inp
    seqlen = length
    generated_seqs = ray.get(run_protgpt2.remote(startsequence, seqlen, repetitionPenalty, top_k_poolsize, max_seqs))
    gen_seqs = [x["generated_text"] for x in generated_seqs]
    print(gen_seqs)
    sequencestxt = ""
    for i, seq in enumerate(gen_seqs):
        s = seq.replace("\n","")
        seqlen = len(s)
        s = "\n".join([s[i:i+70] for i in range(0, len(s), 70)])
        sequencestxt +=f">seq{i}, {seqlen} residues \n{s}\n\n"
    return sequencestxt


def update(inp):
    print("Running AF on", inp)
    startsequence = inp
    # run alphafold using ray
    plddts = ray.get(run_alphafold.remote(startsequence))
    print(plddts)
    x = np.arange(10)
    #plt.style.use(["seaborn-ticks", "seaborn-talk"])
    #fig = plt.figure()
    #ax = fig.add_subplot(111)
    #ax.plot(plddts)
    #ax.set_ylabel("predicted LDDT")
    #ax.set_xlabel("positions")
    #ax.set_title("pLDDT")
    fig = go.Figure(data=go.Scatter(x=np.arange(len(plddts)), y=plddts, hovertemplate='<i>pLDDT</i>: %{y:.2f} <br><i>Residue index:</i> %{x}'))
    fig.update_layout(title="pLDDT",
                       xaxis_title="Residue index",
                       yaxis_title="pLDDT",
                       height=500, 
                       template="simple_white")
    return (
        molecule(
            f"test_unrelaxed_model_1.pdb",
        ),
        fig,
        f"{np.mean(plddts):.1f} Β± {np.std(plddts):.1f}",
    )


def read_mol(molpath):
    with open(molpath, "r") as fp:
        lines = fp.readlines()
    mol = ""
    for l in lines:
        mol += l
    return mol


def molecule(pdb):
    mol = read_mol(pdb)
    x = (
        """<!DOCTYPE html>
        <html>
        <head>    
    <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
     <link rel="stylesheet" href="https://unpkg.com/flowbite@1.4.5/dist/flowbite.min.css" />
    <style>
    body{
        font-family:sans-serif
    }
.mol-container {
  width: 100%;
  height: 800px;
  position: relative;
}
.space-x-2 > * + *{
    margin-left: 0.5rem;
}
.p-1{
    padding:0.5rem;
}
.flex{
    display:flex;
    align-items: center;
}
.w-4{
    width:1rem;
}
.h-4{
    height:1rem;
}
.mt-4{
    margin-top:1rem;
}
</style>
<script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script>
    </head>
    <body>  
   
    <div id="container" class="mol-container"></div>
    <div class="flex">
        <div class="px-4">
        <label for="sidechain" class="relative inline-flex items-center mb-4 cursor-pointer ">
            <input  id="sidechain"type="checkbox" class="sr-only peer">
            <div class="w-11 h-6 bg-gray-200 rounded-full peer peer-focus:ring-4 peer-focus:ring-blue-300 dark:peer-focus:ring-blue-800 dark:bg-gray-700 peer-checked:after:translate-x-full peer-checked:after:border-white after:absolute after:top-0.5 after:left-[2px] after:bg-white after:border-gray-300 after:border after:rounded-full after:h-5 after:w-5 after:transition-all dark:border-gray-600 peer-checked:bg-blue-600"></div>
            <span class="ml-3 text-sm font-medium text-gray-900 dark:text-gray-300">Show side chains</span>
          </label>
        </div>
 <button type="button" class="text-gray-900 bg-white hover:bg-gray-100 border border-gray-200 focus:ring-4 focus:outline-none focus:ring-gray-100 font-medium rounded-lg text-sm px-5 py-2.5 text-center inline-flex items-center dark:focus:ring-gray-600 dark:bg-gray-800 dark:border-gray-700 dark:text-white dark:hover:bg-gray-700 mr-2 mb-2" id="download">
                    <svg class="w-6 h-6 mr-2 -ml-1" fill="none" stroke="currentColor" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M4 16v1a3 3 0 003 3h10a3 3 0 003-3v-1m-4-4l-4 4m0 0l-4-4m4 4V4"></path></svg>
                    Download predicted structure
                  </button>
            </div>       
<div class="text-sm">
                            <div class="font-medium mt-4"><b>AlphaFold model confidence:</b></div>
                            <div class="flex space-x-2 py-1"><span class="w-4 h-4"
                                    style="background-color: rgb(0, 83, 214);">&nbsp;</span><span class="legendlabel">Very high
                                    (pLDDT &gt; 90)</span></div>
                            <div class="flex space-x-2 py-1"><span class="w-4 h-4"
                                    style="background-color: rgb(101, 203, 243);">&nbsp;</span><span class="legendlabel">Confident
                                    (90 &gt; pLDDT &gt; 70)</span></div>
                            <div class="flex space-x-2 py-1"><span class="w-4 h-4"
                                    style="background-color: rgb(255, 219, 19);">&nbsp;</span><span class="legendlabel">Low (70 &gt;
                                    pLDDT &gt; 50)</span></div>
                            <div class="flex space-x-2 py-1"><span class="w-4 h-4"
                                    style="background-color: rgb(255, 125, 69);">&nbsp;</span><span class="legendlabel">Very low
                                    (pLDDT &lt; 50)</span></div>
                            <div class="row column legendDesc"> AlphaFold produces a per-residue confidence
                                score (pLDDT) between 0 and 100. Some regions below 50 pLDDT may be unstructured in isolation.
                            </div>
                        </div>
            <script>
            let viewer = null;
            let voldata = null;
            $(document).ready(function () {

                let element = $("#container");
                let config = { backgroundColor: "white" };
                viewer = $3Dmol.createViewer( element, config );
                viewer.ui.initiateUI();
                let data = `"""
        + mol
        + """`  
                viewer.addModel( data, "pdb" );
                //AlphaFold code from https://gist.github.com/piroyon/30d1c1099ad488a7952c3b21a5bebc96
                let colorAlpha = function (atom) {
                    if (atom.b < 50) {
                        return "OrangeRed";
                    } else if (atom.b < 70) {
                        return "Gold";
                    } else if (atom.b < 90) {
                        return "MediumTurquoise";
                    } else {
                        return "Blue";
                    }
                };
                viewer.setStyle({}, { cartoon: { colorfunc: colorAlpha } });
                viewer.zoomTo();
                viewer.render();
                viewer.zoom(0.8, 2000);
                viewer.getModel(0).setHoverable({}, true,
                    function (atom, viewer, event, container) {
                        console.log(atom)
                        if (!atom.label) {
                            atom.label = viewer.addLabel(atom.resn+atom.resi+" pLDDT=" + atom.b, { position: atom, backgroundColor: "mintcream", fontColor: "black" });
                        }
                    },
                    function (atom, viewer) {
                        if (atom.label) {
                            viewer.removeLabel(atom.label);
                            delete atom.label;
                        }
                    }
                );
                $("#sidechain").change(function () {
                    if (this.checked) {
                        BB = ["C", "O", "N"]
                        viewer.setStyle( {"and": [{resn: ["GLY", "PRO"], invert: true},{atom: BB, invert: true},]},{stick: {colorscheme: "WhiteCarbon", radius: 0.3}, cartoon: { colorfunc: colorAlpha }});
                        viewer.render()
                    } else {
                        viewer.setStyle({cartoon: { colorfunc: colorAlpha }});
                        viewer.render()
                    }
                });
                $("#download").click(function () {
                    download("gradioFold_model1.pdb", data);
                })
        });

        function download(filename, text) {
            var element = document.createElement("a");
            element.setAttribute("href", "data:text/plain;charset=utf-8," + encodeURIComponent(text));
            element.setAttribute("download", filename);

            element.style.display = "none";
            document.body.appendChild(element);

            element.click();

            document.body.removeChild(element);
        }
        </script>
        </body></html>"""
    )

    return f"""<iframe style="width: 800px; height: 1200px" name="result" allow="midi; geolocation; microphone; camera; 
    display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
    allow-scripts allow-same-origin allow-popups 
    allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
    allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""

def change_sequence(chosenSeq):
    return chosenSeq

proteindream = gr.Blocks()

with proteindream:
    gr.Markdown("# GradioFold")
    gr.Markdown(
        """GradioFold is a web-based tool that combines a large language model trained on natural protein sequence (protGPT2) with structure prediction using AlphaFold. 
    Type a start sequence that protGPT2 can complete or let protGPT2 generate a complete sequence without a start token."""
    )
    gr.Markdown("## protGPT2")
    gr.Markdown(
        """
        Enter a start sequence and have the language model complete it OR leave empty.
    """
    )
    with gr.Box():
        with gr.Row():
            inp = gr.Textbox(placeholder="M", label="Start sequence")
            length = gr.Number(value=50, label="Max sequence length")
        with gr.Row():
            repetitionPenalty = gr.Slider(minimum=1, maximum=5,value=1.2, label="Repetition penalty")
            top_k_poolsize = gr.Slider(minimum=700, maximum=52056,value=950, label="Top-K sampling pool size")
            max_seqs = gr.Slider(minimum=2, maximum=20,value=5, step=1, label="Number of sequences to generate")
        btn = gr.Button("Predict sequences using protGPT2")

    results = gr.Textbox(label="Results", lines=15)
    btn.click(fn=update_protGPT2, inputs=[inp, length, repetitionPenalty, top_k_poolsize, max_seqs], outputs=results)

    gr.Markdown("## AlphaFold")
    gr.Markdown(
        "Select a generated sequence above and copy it in the field below for structure prediction using AlphaFold2. You can also edit the sequence. Predictions will take around 2-5 minutes to be processed. Proteins larger than about 1000 residues will not fit into memory."
    )
    with gr.Group():
        chosenSeq = gr.Textbox(label="Chosen sequence")
        btn2 = gr.Button("Predict structure")
    with gr.Group():
        meanpLDDT = gr.Textbox(label="Mean pLDDT of chosen sequence")
        with gr.Row():
            mol = gr.HTML()
            plot = gr.Plot(label="pLDDT")
    gr.Markdown(
        """## Acknowledgements
         More information about the used algorithms can be found below. 

         All code is available on [Huggingface](https://huggingface.co/spaces/simonduerr/protGPT2_gradioFold/blob/main) and licensed under MIT license.

        - ProtGPT2: Ferruz et.al πŸ“„[BioRxiv](https://doi.org/10.1101/2022.03.09.483666) πŸ’»[Code](https://huggingface.co/nferruz/ProtGPT2)
        - AlphaFold2: Jumper et.al πŸ“„[Paper](https://doi.org/10.1038/s41586-021-03819-2) πŸ’»[Code](https://github.com/deepmind/alphafold) Model parameters released under CC BY 4.0
        - ColabFold: Mirdita et.al πŸ“„[Paper](https://doi.org/10.1101/2021.08.15.456425 ) πŸ’»[Code](https://github.com/sokrypton/ColabFold)
        - 3Dmol.js: Rego & Koes πŸ“„[Paper](https://academic.oup.com/bioinformatics/article/31/8/1322/213186)  πŸ’» [Code](https://github.com/3dmol/3Dmol.js)
        
        Created by [@simonduerr](https://twitter.com/simonduerr)
        Thanks to Hugginface team for sponsoring a free GPU for this demo.
    """
    )
    #seqChoice.change(fn=update_seqs, inputs=seqChoice, outputs=chosenSeq)
    btn2.click(fn=update, inputs=chosenSeq, outputs=[mol, plot, meanpLDDT])

ray.init(runtime_env={"working_dir": "./alphafold"})

proteindream.launch(share=False)