Spaces:
Runtime error
Runtime error
File size: 16,660 Bytes
f1c8a72 f78ba33 1fe68a8 f78ba33 6ca354c f78ba33 1fe68a8 f78ba33 4ea051a f78ba33 d01498c f78ba33 a3f9a3d 549e82e 4ea051a 4c3f79a 7ec4ca8 549e82e f78ba33 b9ecc46 f78ba33 446c19d f78ba33 05564bf 5889003 4e89be8 05564bf f78ba33 5889003 f78ba33 99b4ce0 05564bf 914ed63 05564bf f78ba33 d6bb046 f78ba33 4ea051a f78ba33 05564bf 914ed63 ea2d2e8 f78ba33 4404556 f78ba33 05564bf f78ba33 9bd7549 5ceafaf cbda9bd 914ed63 9bd7549 f78ba33 05564bf d6bb046 f78ba33 753ea40 042fbee 753ea40 042fbee f78ba33 82648e3 f78ba33 b805158 f78ba33 b805158 f78ba33 51b5cd7 f78ba33 5889003 dc3c197 5889003 446c19d 9bd7549 5889003 ac4779d f78ba33 9bd7549 f78ba33 82648e3 f78ba33 b345f06 f78ba33 b345f06 f78ba33 1a462a1 446c19d f78ba33 d6bb046 f78ba33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import gradio as gr
import numpy as np
import os
import ray
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
from transformers import pipeline as pl
from GPUtil import showUtilization as gpu_usage
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import sys
import plotly.graph_objects as go
import torch
import gc
import jax
from numba import cuda
print('GPU available',torch.cuda.is_available())
print('__CUDA Device Name:',torch.cuda.get_device_name(0))
print(os.getcwd())
if "/home/user/app/alphafold" not in sys.path:
sys.path.append("/home/user/app/alphafold")
from alphafold.common import protein
from alphafold.data import pipeline
from alphafold.data import templates
from alphafold.model import data
from alphafold.model import config
from alphafold.model import model
def mk_mock_template(query_sequence):
"""create blank template"""
ln = len(query_sequence)
output_templates_sequence = "-" * ln
templates_all_atom_positions = np.zeros(
(ln, templates.residue_constants.atom_type_num, 3)
)
templates_all_atom_masks = np.zeros((ln, templates.residue_constants.atom_type_num))
templates_aatype = templates.residue_constants.sequence_to_onehot(
output_templates_sequence, templates.residue_constants.HHBLITS_AA_TO_ID
)
template_features = {
"template_all_atom_positions": templates_all_atom_positions[None],
"template_all_atom_masks": templates_all_atom_masks[None],
"template_aatype": np.array(templates_aatype)[None],
"template_domain_names": [f"none".encode()],
}
return template_features
def predict_structure(prefix, feature_dict, model_runners, random_seed=0):
"""Predicts structure using AlphaFold for the given sequence."""
# Run the models.
# currently we only run model1
plddts = {}
for model_name, model_runner in model_runners.items():
processed_feature_dict = model_runner.process_features(
feature_dict, random_seed=random_seed
)
prediction_result = model_runner.predict(processed_feature_dict)
b_factors = (
prediction_result["plddt"][:, None]
* prediction_result["structure_module"]["final_atom_mask"]
)
unrelaxed_protein = protein.from_prediction(
processed_feature_dict, prediction_result, b_factors
)
unrelaxed_pdb_path = f"{prefix}_unrelaxed_{model_name}.pdb"
plddts[model_name] = prediction_result["plddt"]
print(f"{model_name} {plddts[model_name].mean()}")
with open(unrelaxed_pdb_path, "w") as f:
f.write(protein.to_pdb(unrelaxed_protein))
return plddts
@ray.remote
def run_protgpt2(startsequence, length, repetitionPenalty, top_k_poolsize, max_seqs):
print("running protgpt2")
print(gpu_usage())
protgpt2 = pl("text-generation", model="nferruz/ProtGPT2")
sequences = protgpt2(
startsequence,
max_length=length,
do_sample=True,
top_k=top_k_poolsize,
repetition_penalty=repetitionPenalty,
num_return_sequences=max_seqs,
eos_token_id=0,
)
print("Cleaning up after protGPT2")
#print(gpu_usage())
#torch.cuda.empty_cache()
#device = cuda.get_current_device()
#device.reset()
#print(gpu_usage())
return sequences
@ray.remote
def run_alphafold(startsequence):
print(gpu_usage())
model_runners = {}
models = ["model_1"] # ,"model_2","model_3","model_4","model_5"]
for model_name in models:
model_config = config.model_config(model_name)
model_config.data.eval.num_ensemble = 1
model_params = data.get_model_haiku_params(model_name=model_name, data_dir=".")
model_runner = model.RunModel(model_config, model_params)
model_runners[model_name] = model_runner
query_sequence = startsequence.replace("\n", "")
feature_dict = {
**pipeline.make_sequence_features(
sequence=query_sequence, description="none", num_res=len(query_sequence)
),
**pipeline.make_msa_features(
msas=[[query_sequence]], deletion_matrices=[[[0] * len(query_sequence)]]
),
**mk_mock_template(query_sequence),
}
plddts = predict_structure("test", feature_dict, model_runners)
print("AF2 done")
#backend = jax.lib.xla_bridge.get_backend()
#for buf in backend.live_buffers(): buf.delete()
#device = cuda.get_current_device()
#device.reset()
#print(gpu_usage())
return plddts["model_1"]
def update_protGPT2(inp, length,repetitionPenalty, top_k_poolsize, max_seqs):
startsequence = inp
seqlen = length
generated_seqs = ray.get(run_protgpt2.remote(startsequence, seqlen, repetitionPenalty, top_k_poolsize, max_seqs))
gen_seqs = [x["generated_text"] for x in generated_seqs]
print(gen_seqs)
sequencestxt = ""
for i, seq in enumerate(gen_seqs):
s = seq.replace("\n","")
s = "\n".join([s[i:i+70] for i in range(0, len(s), 70)])
sequencestxt +=f">seq{i}\n{s}\n"
return sequencestxt
def update(inp):
print("Running AF on", inp)
startsequence = inp
# run alphafold using ray
plddts = ray.get(run_alphafold.remote(startsequence))
print(plddts)
x = np.arange(10)
#plt.style.use(["seaborn-ticks", "seaborn-talk"])
#fig = plt.figure()
#ax = fig.add_subplot(111)
#ax.plot(plddts)
#ax.set_ylabel("predicted LDDT")
#ax.set_xlabel("positions")
#ax.set_title("pLDDT")
fig = go.Figure(data=go.Scatter(x=np.arange(len(plddts)), y=plddts, hovertemplate='<i>pLDDT</i>: %{y:.2f} <br><i>Residue index:</i> %{x}'))
fig.update_layout(title="pLDDT",
xaxis_title="Residue index",
yaxis_title="pLDDT",
height=500,
template="simple_white")
return (
molecule(
f"test_unrelaxed_model_1.pdb",
),
fig,
f"{np.mean(plddts):.1f} Β± {np.std(plddts):.1f}",
)
def read_mol(molpath):
with open(molpath, "r") as fp:
lines = fp.readlines()
mol = ""
for l in lines:
mol += l
return mol
def molecule(pdb):
mol = read_mol(pdb)
x = (
"""<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8" />
<link rel="stylesheet" href="https://unpkg.com/flowbite@1.4.5/dist/flowbite.min.css" />
<style>
body{
font-family:sans-serif
}
.mol-container {
width: 100%;
height: 800px;
position: relative;
}
.space-x-2 > * + *{
margin-left: 0.5rem;
}
.p-1{
padding:0.5rem;
}
.flex{
display:flex;
align-items: center;
}
.w-4{
width:1rem;
}
.h-4{
height:1rem;
}
.mt-4{
margin-top:1rem;
}
</style>
<script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script>
</head>
<body>
<div id="container" class="mol-container"></div>
<div class="flex">
<div class="px-4">
<label for="sidechain" class="relative inline-flex items-center mb-4 cursor-pointer ">
<input id="sidechain"type="checkbox" class="sr-only peer">
<div class="w-11 h-6 bg-gray-200 rounded-full peer peer-focus:ring-4 peer-focus:ring-blue-300 dark:peer-focus:ring-blue-800 dark:bg-gray-700 peer-checked:after:translate-x-full peer-checked:after:border-white after:absolute after:top-0.5 after:left-[2px] after:bg-white after:border-gray-300 after:border after:rounded-full after:h-5 after:w-5 after:transition-all dark:border-gray-600 peer-checked:bg-blue-600"></div>
<span class="ml-3 text-sm font-medium text-gray-900 dark:text-gray-300">Show side chains</span>
</label>
</div>
<button type="button" class="text-gray-900 bg-white hover:bg-gray-100 border border-gray-200 focus:ring-4 focus:outline-none focus:ring-gray-100 font-medium rounded-lg text-sm px-5 py-2.5 text-center inline-flex items-center dark:focus:ring-gray-600 dark:bg-gray-800 dark:border-gray-700 dark:text-white dark:hover:bg-gray-700 mr-2 mb-2" id="download">
<svg class="w-6 h-6 mr-2 -ml-1" fill="none" stroke="currentColor" viewBox="0 0 24 24" xmlns="http://www.w3.org/2000/svg"><path stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M4 16v1a3 3 0 003 3h10a3 3 0 003-3v-1m-4-4l-4 4m0 0l-4-4m4 4V4"></path></svg>
Download predicted structure
</button>
</div>
<div class="text-sm">
<div class="font-medium mt-4"><b>AlphaFold model confidence:</b></div>
<div class="flex space-x-2 py-1"><span class="w-4 h-4"
style="background-color: rgb(0, 83, 214);"> </span><span class="legendlabel">Very high
(pLDDT > 90)</span></div>
<div class="flex space-x-2 py-1"><span class="w-4 h-4"
style="background-color: rgb(101, 203, 243);"> </span><span class="legendlabel">Confident
(90 > pLDDT > 70)</span></div>
<div class="flex space-x-2 py-1"><span class="w-4 h-4"
style="background-color: rgb(255, 219, 19);"> </span><span class="legendlabel">Low (70 >
pLDDT > 50)</span></div>
<div class="flex space-x-2 py-1"><span class="w-4 h-4"
style="background-color: rgb(255, 125, 69);"> </span><span class="legendlabel">Very low
(pLDDT < 50)</span></div>
<div class="row column legendDesc"> AlphaFold produces a per-residue confidence
score (pLDDT) between 0 and 100. Some regions below 50 pLDDT may be unstructured in isolation.
</div>
</div>
<script>
let viewer = null;
let voldata = null;
$(document).ready(function () {
let element = $("#container");
let config = { backgroundColor: "white" };
viewer = $3Dmol.createViewer( element, config );
viewer.ui.initiateUI();
let data = `"""
+ mol
+ """`
viewer.addModel( data, "pdb" );
//AlphaFold code from https://gist.github.com/piroyon/30d1c1099ad488a7952c3b21a5bebc96
let colorAlpha = function (atom) {
if (atom.b < 50) {
return "OrangeRed";
} else if (atom.b < 70) {
return "Gold";
} else if (atom.b < 90) {
return "MediumTurquoise";
} else {
return "Blue";
}
};
viewer.setStyle({}, { cartoon: { colorfunc: colorAlpha } });
viewer.zoomTo();
viewer.render();
viewer.zoom(0.8, 2000);
viewer.getModel(0).setHoverable({}, true,
function (atom, viewer, event, container) {
console.log(atom)
if (!atom.label) {
atom.label = viewer.addLabel(atom.resn+atom.resi+" pLDDT=" + atom.b, { position: atom, backgroundColor: "mintcream", fontColor: "black" });
}
},
function (atom, viewer) {
if (atom.label) {
viewer.removeLabel(atom.label);
delete atom.label;
}
}
);
$("#sidechain").change(function () {
if (this.checked) {
BB = ["C", "O", "N"]
viewer.setStyle( {"and": [{resn: ["GLY", "PRO"], invert: true},{atom: BB, invert: true},]},{stick: {colorscheme: "WhiteCarbon", radius: 0.3}, cartoon: { colorfunc: colorAlpha }});
viewer.render()
} else {
viewer.setStyle({cartoon: { colorfunc: colorAlpha }});
viewer.render()
}
});
$("#download").click(function () {
download("gradioFold_model1.pdb", data);
})
});
function download(filename, text) {
var element = document.createElement("a");
element.setAttribute("href", "data:text/plain;charset=utf-8," + encodeURIComponent(text));
element.setAttribute("download", filename);
element.style.display = "none";
document.body.appendChild(element);
element.click();
document.body.removeChild(element);
}
</script>
</body></html>"""
)
return f"""<iframe style="width: 800px; height: 1200px" name="result" allow="midi; geolocation; microphone; camera;
display-capture; encrypted-media;" sandbox="allow-modals allow-forms
allow-scripts allow-same-origin allow-popups
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen=""
allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""
def change_sequence(chosenSeq):
return chosenSeq
proteindream = gr.Blocks()
with proteindream:
gr.Markdown("# GradioFold")
gr.Markdown(
"""GradioFold is a web-based tool that combines a large language model trained on natural protein sequence (protGPT2) with structure prediction using AlphaFold.
Type a start sequence that protGPT2 can complete or let protGPT2 generate a complete sequence."""
)
gr.Markdown("## protGPT2")
gr.Markdown(
"""
Enter a start sequence and have the language model complete it OR leave empty.
"""
)
with gr.Box():
with gr.Row():
inp = gr.Textbox(placeholder="M", label="Start sequence")
length = gr.Number(value=50, label="Max sequence length")
with gr.Row():
repetitionPenalty = gr.Slider(minimum=1, maximum=5,value=1.2, label="Repetition penalty")
top_k_poolsize = gr.Slider(minimum=700, maximum=52056,value=950, label="Top-K sampling pool size")
max_seqs = gr.Slider(minimum=2, maximum=20,value=5, label="Number of sequences to generate")
btn = gr.Button("Predict sequences using protGPT2")
results = gr.Textbox(label="Results", lines=15)
btn.click(fn=update_protGPT2, inputs=[inp, length, repetitionPenalty, top_k_poolsize, max_seqs], outputs=results)
gr.Markdown("## AlphaFold")
gr.Markdown(
"Select a generated sequence above and copy it in the field below for structure prediction using AlphaFold2."
)
with gr.Group():
chosenSeq = gr.Textbox(label="Chosen sequence")
btn2 = gr.Button("Predict structure")
with gr.Group():
meanpLDDT = gr.Textbox(label="Mean pLDDT of chosen sequence")
with gr.Row():
mol = gr.HTML()
plot = gr.Plot(label="pLDDT")
gr.Markdown(
"""## Acknowledgements
This was a fun demo using Gradio, Huggingface Spaces and ColabFold as inspiration. More information about the used algorithms can be found below.
All code is available on [Huggingface](https://huggingface.co/spaces/simonduerr/protGPT2_gradioFold/blob/main) and licensed under MIT license.
- ProtGPT2: Ferruz et.al π[BioRxiv](https://doi.org/10.1101/2022.03.09.483666) π»[Code](https://huggingface.co/nferruz/ProtGPT2)
- AlphaFold2: Jumper et.al π[Paper](https://doi.org/10.1038/s41586-021-03819-2) π»[Code](https://github.com/deepmind/alphafold) Model parameters released under CC BY 4.0
- ColabFold: Mirdita et.al π[Paper](https://doi.org/10.1101/2021.08.15.456425 ) π»[Code](https://github.com/sokrypton/ColabFold)
- 3Dmol.js: Rego & Koes π[Paper](https://academic.oup.com/bioinformatics/article/31/8/1322/213186) π» [Code](https://github.com/3dmol/3Dmol.js)
Created by [@simonduerr](https://twitter.com/simonduerr)
"""
)
#seqChoice.change(fn=update_seqs, inputs=seqChoice, outputs=chosenSeq)
btn2.click(fn=update, inputs=chosenSeq, outputs=[mol, plot, meanpLDDT])
ray.init(runtime_env={"working_dir": "."})
proteindream.launch(share=False)
|