import gradio as gr import torch import os import spaces import uuid from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler from diffusers.utils import export_to_video from huggingface_hub import hf_hub_download from safetensors.torch import load_file from PIL import Image from gradio_client import Client, file from moviepy.editor import VideoFileClip, AudioFileClip, concatenate_videoclips # using tango2 via Gradio python client client = Client("declare-lab/tango2") # Constants bases = { "ToonYou": "frankjoshua/toonyou_beta6", "epiCRealism": "emilianJR/epiCRealism" } step_loaded = None base_loaded = "epiCRealism" motion_loaded = None # Ensure model and scheduler are initialized in GPU-enabled function if not torch.cuda.is_available(): raise NotImplementedError("No GPU detected!") device = "cuda" dtype = torch.float16 pipe = AnimateDiffPipeline.from_pretrained(bases[base_loaded], torch_dtype=dtype).to(device) pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") # Safety checkers from safety_checker import StableDiffusionSafetyChecker from transformers import CLIPFeatureExtractor safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker").to(device) feature_extractor = CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32") def check_nsfw_images(images: list[Image.Image]) -> list[bool]: safety_checker_input = feature_extractor(images, return_tensors="pt").to(device) has_nsfw_concepts = safety_checker(images=[images], clip_input=safety_checker_input.pixel_values.to(device)) return has_nsfw_concepts # Function @spaces.GPU(enable_queue=True) def generate_image(prompt, base, motion, step, progress=gr.Progress()): global step_loaded global base_loaded global motion_loaded print(prompt, base, step) if step_loaded != step: repo = "ByteDance/AnimateDiff-Lightning" ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" pipe.unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device), strict=False) step_loaded = step if base_loaded != base: pipe.unet.load_state_dict(torch.load(hf_hub_download(bases[base], "unet/diffusion_pytorch_model.bin"), map_location=device), strict=False) base_loaded = base if motion_loaded != motion: pipe.unload_lora_weights() if motion != "": pipe.load_lora_weights(motion, adapter_name="motion") pipe.set_adapters(["motion"], [0.7]) motion_loaded = motion progress((0, step)) def progress_callback(i, t, z): progress((i+1, step)) output = pipe(prompt=prompt, guidance_scale=1.0, num_inference_steps=step, callback=progress_callback, callback_steps=1) has_nsfw_concepts = check_nsfw_images([output.frames[0][0]]) if has_nsfw_concepts[0]: gr.Warning("NSFW content detected.") return None name = str(uuid.uuid4()).replace("-", "") video_path = f"/tmp/{name}.mp4" export_to_video(output.frames[0], video_path, fps=10) audio_path = tango2(prompt) final_video_path = fuse_together(audio_path, video_path) return final_video_path def tango2(prompt): results = client.predict( prompt=prompt, steps=100, guidance=3, api_name="/predict" ) return results def fuse_together(audio, video): # Load your video and audio files video_clip = VideoFileClip(video) audio_clip = AudioFileClip(audio) # Loop the video twice looped_video = concatenate_videoclips([video_clip, video_clip]) # Cut the audio to match the duration of the looped video looped_audio = audio_clip.subclip(0, looped_video.duration) # Set the audio of the looped video to the adjusted audio clip final_video = looped_video.set_audio(looped_audio) # Write the result to a file (output will be twice the length of the original video) name = str(uuid.uuid4()).replace("-", "") path = f"/tmp/{name}.mp4" final_video.write_videofile(path, codec="libx264", audio_codec="aac") return path # Gradio Interface with gr.Blocks(css="style.css") as demo: gr.HTML( "