Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import os | |
import spaces | |
import uuid | |
from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler | |
from diffusers.utils import export_to_video | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
from PIL import Image | |
# Constants | |
base = "frankjoshua/toonyou_beta6" | |
repo = "ByteDance/AnimateDiff-Lightning" | |
checkpoints = { | |
"1-Step" : ["animatediff_lightning_1step_diffusers.safetensors", 1], | |
"2-Step" : ["animatediff_lightning_2step_diffusers.safetensors", 2], | |
"4-Step" : ["animatediff_lightning_4step_diffusers.safetensors", 4], | |
"8-Step" : ["animatediff_lightning_8step_diffusers.safetensors", 8], | |
} | |
loaded = None | |
# Ensure model and scheduler are initialized in GPU-enabled function | |
if torch.cuda.is_available(): | |
device = "cuda" | |
dtype = torch.float16 | |
adapter = MotionAdapter().to(device, dtype) | |
pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device) | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") | |
else: | |
raise NotImplementedError("No GPU detected!") | |
# Function | |
def generate_image(prompt, ckpt): | |
global loaded | |
print(prompt, ckpt) | |
checkpoint = checkpoints[ckpt][0] | |
num_inference_steps = checkpoints[ckpt][1] | |
if loaded != num_inference_steps: | |
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device=device), strict=False) | |
loaded = num_inference_steps | |
output = pipe(prompt=prompt, guidance_scale=1.0, num_inference_steps=num_inference_steps) | |
name = str(uuid.uuid4()).replace("-", "") | |
path = f"/tmp/{name}.mp4" | |
export_to_video(output.frames[0], path, fps=10) | |
return path | |
# Gradio Interface | |
with gr.Blocks(css="style.css") as demo: | |
gr.HTML("<h1><center>AnimateDiff-Lightning ⚡</center></h1>") | |
gr.HTML("<p><center>Lightning-fast text-to-video generation</center></p><p><center><a href='https://huggingface.co/ByteDance/AnimateDiff-Lightning'>https://huggingface.co/ByteDance/AnimateDiff-Lightning</a></center></p>") | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Textbox(label='Enter your prompt (English)', scale=8) | |
ckpt = gr.Dropdown(label='Select inference steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True) | |
submit = gr.Button(scale=1, variant='primary') | |
video = gr.Video(label='AnimateDiff-Lightning Generated Image') | |
prompt.submit( | |
fn=generate_image, | |
inputs=[prompt, ckpt], | |
outputs=video, | |
) | |
submit.click( | |
fn=generate_image, | |
inputs=[prompt, ckpt], | |
outputs=video, | |
) | |
demo.queue().launch() |