import os if os.environ.get("SPACES_ZERO_GPU") is not None: import spaces else: class spaces: @staticmethod def GPU(func): def wrapper(*args, **kwargs): return func(*args, **kwargs) return wrapper import torch from diffusers import MochiPipeline from diffusers.utils import export_to_video import gradio as gr import config as cfg # Load the pre-trained model pipe = MochiPipeline.from_pretrained(cfg.MODEL_PRE_TRAINED_ID, variant="bf16", torch_dtype=torch.bfloat16) # Enable memory-saving optimizations pipe.enable_model_cpu_offload() pipe.enable_vae_tiling() @spaces.GPU(duration=240) def generate_video(prompt, num_frames=84, fps=30, high_quality=False): if high_quality: print("High quality option selected. Requires 42GB VRAM.") # Check if running on ZeroGPU if os.environ.get("SPACES_ZERO_GPU") is not None: raise RuntimeError("High quality option may fail on ZeroGPU environments.") with torch.autocast("cuda", torch.bfloat16, cache_enabled=False): frames = pipe(prompt, num_frames=num_frames).frames[0] else: print("Standard quality option selected.") frames = pipe(prompt, num_frames=num_frames).frames[0] # Export frames as video video_path = "mochi.mp4" export_to_video(frames, video_path, fps=fps) return video_path # Create the Gradio interface interface = gr.Interface( fn=generate_video, inputs=[ gr.Textbox(lines=2, placeholder="Введите свой текстовый промпт... 💡"), gr.Slider(minimum=1, maximum=240, value=84, label="Количество frames 🎞️"), gr.Slider(minimum=1, maximum=60, value=30, label="FPS (Frames в секунду) ⏱️"), gr.Checkbox(label="High Quality Output (requires 42GB VRAM, may fail on ZeroGPU)") ], outputs=gr.Video(), title=cfg.TITLE, description=cfg.DESCRIPTION, examples=cfg.EXAMPLES, article=cfg.BUY_ME_A_COFFE ) # Center the title and description using custom CSS interface.css = """ .interface-title { text-align: center; } .interface-description { text-align: center; } """ # Launch the application if __name__ == "__main__": interface.launch()