Spaces:
Running
Running
File size: 7,747 Bytes
b116026 8653180 b116026 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
os.system('pip install modelscope')
os.system('pip install "modelscope[cv]" -f https://modelscope.oss-cn-beijing.aliyuncs.com/releases/repo.html')
os.system('pip install skimage')
import json
from PIL import Image
from skimage import io
import gradio as gr
from modelscope_studio import encode_image, decode_image, call_demo_service
yes, no = "是", "否"
def get_size(h, w, max_size=720):
if min(h, w) > max_size:
if h > w:
h, w = int(max_size * h / w), max_size
else:
h, w = max_size, int(max_size * w / h)
return h, w
def inference(img: Image, colorization_option: str, image_denoise_option: str, color_enhance_option: str) -> Image:
if img is None:
return None
w, h = img.size
h, w = get_size(h, w, 512)
img = img.resize((w, h))
input_url = encode_image(img)
res_url = input_url
# image-denoising (optional)
if image_denoise_option == yes:
data = {
"task": "image-denoising",
"inputs": [
res_url
],
"parameters":{},
"urlPaths": {
"inUrls": [
{
"value": res_url,
"fileType": "png",
"type": "image",
"displayType": "ImgUploader",
"validator": {
"accept": "*.jpeg,*.jpg,*.png",
"max_resolution": "5000*5000",
"max_size": "10m"
},
"name": "",
"title": ""
}
],
"outUrls": [
{
"outputKey": "output_img",
"type": "image"
}
]
}
}
result = call_demo_service(
path='damo', name='cv_nafnet_image-denoise_sidd', data=json.dumps(data))
print(f"image-denoising result: {result}")
res_url = result['data']['output_img']
# image-colorization (optional)
if colorization_option == yes:
data = {
"task": "image-colorization",
"inputs": [
res_url
],
"parameters":{},
"urlPaths": {
"inUrls": [
{
"value": res_url,
"fileType": "png",
"type": "image",
"displayType": "ImgUploader",
"validator": {
"accept": "*.jpeg,*.jpg,*.png",
"max_size": "10m",
"max_resolution": "5000*5000",
},
"name": "",
"title": ""
}
],
"outUrls": [
{
"outputKey": "output_img",
"type": "image"
}
]
}
}
result = call_demo_service(
path='damo', name='cv_ddcolor_image-colorization', data=json.dumps(data))
print(f"image-colorization result: {result}")
res_url = result['data']['output_img']
# image-portrait-enhancement
data = {
"task": "image-portrait-enhancement",
"inputs": [
res_url
],
"parameters":{},
"urlPaths": {
"inUrls": [
{
"value": res_url,
"fileType": "png",
"type": "image",
"displayType": "ImgUploader",
"validator": {
"accept": "*.jpeg,*.jpg,*.png",
"max_size": "10M",
"max_resolution": "2000*2000",
},
"name": "",
"title": ""
}
],
"outUrls": [
{
"outputKey": "output_img",
"type": "image"
}
]
}
}
result = call_demo_service(
path='damo', name='cv_gpen_image-portrait-enhancement', data=json.dumps(data))
print(f"image-portrait-enhancement result: {result}")
res_url = result['data']['output_img']
# image-color-enhancement (optional)
if color_enhance_option == yes:
data = {
"task": "image-color-enhancement",
"inputs": [
res_url
],
"parameters":{},
"urlPaths": {
"inUrls": [
{
"value": res_url,
"fileType": "png",
"type": "image",
"displayType": "ImgUploader",
"validator": {
"accept": "*.jpeg,*.jpg,*.png",
"max_size": "10m",
"max_resolution": "5000*5000",
},
"name": "",
"title": ""
}
],
"outUrls": [
{
"outputKey": "output_img",
"type": "image"
}
]
}
}
result = call_demo_service(
path='damo', name='cv_csrnet_image-color-enhance-models', data=json.dumps(data))
print(f"image-color-enhancement result: {result}")
res_url = result['data']['output_img']
res_img = decode_image(res_url)
return res_img
title = "AI老照片修复"
description = '''
输入一张老照片,点击一键修复,就能获得由AI完成画质增强、智能上色等处理后的彩色照片!还等什么呢?快让相册里的老照片坐上时光机吧~
'''
examples = [[os.path.dirname(__file__) + './images/input1.jpg'],
[os.path.dirname(__file__) + './images/input2.jpg'],
[os.path.dirname(__file__) + './images/input3.jpg'],
[os.path.dirname(__file__) + './images/input4.jpg'],
[os.path.dirname(__file__) + './images/input5.jpg']]
css_style = "#overview {margin: auto;max-width: 600px; max-height: 400px; width: 100%;}"
with gr.Blocks(title=title, css=css_style) as demo:
gr.HTML('''
<div style="text-align: center; max-width: 720px; margin: 0 auto;">
<img id="overview" alt="overview" src="https://public-vigen-video.oss-cn-shanghai.aliyuncs.com/public/ModelScope/studio_old_photo_restoration/overview_long.gif" />
</div>
''')
gr.Markdown(description)
with gr.Row():
with gr.Column(scale=2):
img_input = gr.components.Image(label="图片", type="pil")
colorization_option = gr.components.Radio(label="重新上色", choices=[yes, no], value=yes)
image_denoise_option = gr.components.Radio(label="应用图像去噪(存在细节损失风险)", choices=[yes, no], value=no)
color_enhance_option = gr.components.Radio(label="应用色彩增强(存在罕见色调风险)", choices=[yes, no], value=no)
btn = gr.Button("一键修复")
with gr.Column(scale=3):
img_output = gr.components.Image(label="图片", type="pil").style(height=600)
inputs = [img_input, colorization_option, image_denoise_option, color_enhance_option]
btn.click(fn=inference, inputs=inputs, outputs=img_output)
gr.Examples(examples, inputs=img_input)
demo.launch() |