enhanced_accessibility = False #@param {type:"boolean"} #@markdown --- #@markdown #### Please select your language: #lang_select = "English" #@param ["English", "Spanish"] #if lang_select == "English": # lang = "en" #elif lang_select == "Spanish": # lang = "es" #else: # raise Exception("Language not supported.") #@markdown --- lang = "en" use_gpu = False #@param {type:"boolean"} from fastapi import FastAPI, Request, Form from fastapi.responses import HTMLResponse from fastapi.responses import FileResponse from fastapi.templating import Jinja2Templates from fastapi.staticfiles import StaticFiles # ... # Mount a directory to serve static files (e.g., CSS and JavaScript) import logging app = FastAPI() app.mount("/static", StaticFiles(directory="static"), name="static") templates = Jinja2Templates(directory="templates") files = {} # Configure logging logging.basicConfig(level=logging.DEBUG) # Mock data for your interface data = { "speaker_options": ["Speaker 1", "Speaker 2", "Speaker 3"], "default_speaker": "Speaker 1", } @app.get("/", response_class=HTMLResponse) async def read_root(request: Request): return templates.TemplateResponse("interface.html", {"request": request, "data": data}) import json import logging import math import sys from pathlib import Path from enum import Enum from typing import Iterable, List, Optional, Union import numpy as np import onnxruntime import glob import ipywidgets as widgets from pydub import AudioSegment import tempfile import uuid import soundfile as sf from IPython.display import display, Audio, Markdown, clear_output from piper_phonemize import phonemize_codepoints, phonemize_espeak, tashkeel_run _LOGGER = logging.getLogger("piper_train.infer_onnx") import os #if not os.path.exists("./content/piper/src/python/lng"): # import subprocess # command = "cp -r ./content/piper/notebooks/lng ./content/piper/src/python/lng" # subprocess.run(command, shell=True) import sys #sys.path.append('/content/piper/notebooks') sys.path.append('./content/piper/src/python') import configparser class Translator: def __init__(self): self.configs = {} def load_language(self, language_name): if language_name not in self.configs: config = configparser.ConfigParser() config.read(os.path.join(os.getcwd(), "lng", f"{language_name}.lang")) self.configs[language_name] = config def translate(self, language_name, string): if language_name == "en": return string elif language_name not in self.configs: self.load_language(language_name) config = self.configs[language_name] try: return config.get("Strings", string) except (configparser.NoOptionError, configparser.NoSectionError): if string: return string else: raise Exception("language engine error: This translation is corrupt!") return 0 #from translator import * lan = Translator() def detect_onnx_models(path): onnx_models = glob.glob(path + '/*.onnx') if len(onnx_models) > 1: return onnx_models elif len(onnx_models) == 1: return onnx_models[0] else: return None renamed_audio_file = None #@app.post("/synthesize") #@app.post("/", response_class=FileResponse) @app.post("/", response_class=HTMLResponse) async def main( request: Request, text_input: str = Form(...), speaker: str = Form(...), speed_slider: float = Form(1.0), noise_scale_slider: float = Form(0.667), noise_scale_w_slider: float = Form(1.0), play: bool = Form(True) ): """Main entry point""" sys.path.append('./content/piper/src/python') models_path = "./content/piper/src/python" logging.basicConfig(level=logging.DEBUG) providers = [ "CPUExecutionProvider" if use_gpu is False else ("CUDAExecutionProvider", {"cudnn_conv_algo_search": "DEFAULT"}) ] sess_options = onnxruntime.SessionOptions() model = None onnx_models = detect_onnx_models(models_path) speaker_selection = widgets.Dropdown( options=[], description=f'{lan.translate(lang, "Select speaker")}:', layout={'visibility': 'hidden'} ) if onnx_models is None: if enhanced_accessibility: playaudio("novoices") raise Exception(lan.translate(lang, "No downloaded voice packages!")) elif isinstance(onnx_models, str): onnx_model = onnx_models model, config = load_onnx(onnx_model, sess_options, providers) print("nuber of speakers = ", config["num_speakers"]) print("speaker", speaker) # rate = speed_slider.value # noise_scale = noise_scale_slider.value # noise_scale_w = noise_scale_w_slider.value auto_play = play audio = inferencing(model, config, 0, text_input, speed_slider, noise_scale_slider, noise_scale_w_slider, auto_play) temp_dir = tempfile.mkdtemp() # Create a temporary directory to store the audio files #temp_dir = tempfile.mkdtemp() # Export the audio to an MP3 file in the temporary directory # temp_audio_file = os.path.join(temp_dir, "generated_audio.mp3") # Rename the audio file based on the text input renamed_audio_file = os.path.join(temp_dir, f"{text_input}.mp3") audio.export(renamed_audio_file, format="mp3") # Save the generated audio as a temporary file filepath = renamed_audio_file # Generate a unique file ID file_id = str(uuid.uuid4()) # Store the file path with the generated file ID files[file_id] = filepath # Create a URL to download the file file_url = f'/download?fileId={file_id}' # os.rename(temp_audio_file, renamed_audio_file) # Specify the path to your MP3 audio file # audio_file_path = "path/to/your/audio.mp3" # Check if the file exists # if not os.path.exists(audio_file_path): # return {"detail": "Audio file not found"} # temp_audio_file = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") # audio.export(temp_audio_file.name, format="mp3") # Rename the temporary audio file based on the text input # global renamed_audio_file # renamed_audio_file = os.path.join(tempfile.gettempdir(), f"{text_input}.mp3") # os.rename(temp_audio_file.name, renamed_audio_file) if config["num_speakers"] > 1: speaker_selection.options = config["speaker_id_map"].values() speaker_selection.layout.visibility = 'visible' preview_sid = 0 else: speaker_selection.layout.visibility = 'hidden' preview_sid = None else: voice_model_names = [] for current in onnx_models: voice_struct = current.split("/")[5] voice_model_names.append(voice_struct) # if enhanced_accessibility: # playaudio("selectmodel") # selection = widgets.Dropdown( # options=voice_model_names, # description=f'{lan.translate(lang, "Select voice package")}:', # ) # load_btn = widgets.Button( # description=lan.translate(lang, "Load it!") # ) # config = None # def load_model(button): # nonlocal config # global onnx_model # nonlocal model # nonlocal models_path # selected_voice = selection.value # onnx_model = f"{models_path}/{selected_voice}" # model, config = load_onnx(onnx_model, sess_options, providers) # if enhanced_accessibility: # playaudio("loaded") # if config["num_speakers"] > 1: # speaker_selection.options = config["speaker_id_map"].values() # speaker_selection.layout.visibility = 'visible' # if enhanced_accessibility: # playaudio("multispeaker") # else: # speaker_selection.layout.visibility = 'hidden' # load_btn.on_click(load_model) # display(selection, load_btn) # display(speaker_selection) # Save the audio as a temporary WAV file return templates.TemplateResponse("interface.html", {"request": request, "file_url": file_url, "data": data}) # Serve the audio file with the correct media type # return FileResponse(renamed_audio_file) # return {"message": f"Text to synthesize: {text_input}, Speed: {speed_slider}, Play: {play}"} @app.get("/download/") async def download_file(fileId: str): # Retrieve the file path from the dictionary using the file ID filepath = files.get(fileId) if filepath: # Create a FileResponse to serve the file for download return FileResponse(filepath, headers={"Content-Disposition": "attachment"}) else: return {"error": "File not found"} def load_onnx(model, sess_options, providers = ["CPUExecutionProvider"]): _LOGGER.debug("Loading model from %s", model) config = load_config(model) model = onnxruntime.InferenceSession( str(model), sess_options=sess_options, providers= providers ) _LOGGER.info("Loaded model from %s", model) return model, config def load_config(model): with open(f"{model}.json", "r") as file: config = json.load(file) return config PAD = "_" # padding (0) BOS = "^" # beginning of sentence EOS = "$" # end of sentence class PhonemeType(str, Enum): ESPEAK = "espeak" TEXT = "text" def phonemize(config, text: str) -> List[List[str]]: """Text to phonemes grouped by sentence.""" if config["phoneme_type"] == PhonemeType.ESPEAK: if config["espeak"]["voice"] == "ar": # Arabic diacritization # https://github.com/mush42/libtashkeel/ text = tashkeel_run(text) return phonemize_espeak(text, config["espeak"]["voice"]) if config["phoneme_type"] == PhonemeType.TEXT: return phonemize_codepoints(text) raise ValueError(f'Unexpected phoneme type: {config["phoneme_type"]}') def phonemes_to_ids(config, phonemes: List[str]) -> List[int]: """Phonemes to ids.""" id_map = config["phoneme_id_map"] ids: List[int] = list(id_map[BOS]) for phoneme in phonemes: if phoneme not in id_map: print("Missing phoneme from id map: %s", phoneme) continue ids.extend(id_map[phoneme]) ids.extend(id_map[PAD]) ids.extend(id_map[EOS]) return ids def audio_float_to_int16( audio: np.ndarray, max_wav_value: float = 32767.0 ) -> np.ndarray: """Normalize audio and convert to int16 range""" audio_norm = audio * (max_wav_value / max(0.01, np.max(np.abs(audio)))) audio_norm = np.clip(audio_norm, -max_wav_value, max_wav_value) audio_norm = audio_norm.astype("int16") return audio_norm def inferencing(model, config, sid, line, length_scale = 1, noise_scale = 0.667, noise_scale_w = 0.8, auto_play=True): audios = [] if config["phoneme_type"] == "PhonemeType.ESPEAK": config["phoneme_type"] = "espeak" text = phonemize(config, line) for phonemes in text: phoneme_ids = phonemes_to_ids(config, phonemes) num_speakers = config["num_speakers"] if num_speakers == 1: speaker_id = None # for now else: speaker_id = sid text = np.expand_dims(np.array(phoneme_ids, dtype=np.int64), 0) text_lengths = np.array([text.shape[1]], dtype=np.int64) scales = np.array( [noise_scale, length_scale, noise_scale_w], dtype=np.float32, ) sid = None if speaker_id is not None: sid = np.array([speaker_id], dtype=np.int64) audio = model.run( None, { "input": text, "input_lengths": text_lengths, "scales": scales, "sid": sid, }, )[0].squeeze((0, 1)) audio = audio_float_to_int16(audio.squeeze()) audios.append(audio) merged_audio = np.concatenate(audios) sample_rate = config["audio"]["sample_rate"] temp_audio_path = os.path.join(tempfile.gettempdir(), "generated_audio.wav") sf.write(temp_audio_path, merged_audio, config["audio"]["sample_rate"]) audio = AudioSegment.from_mp3(temp_audio_path) return audio # return FileResponse(temp_audio_path) # Return the audio file as a FastAPI response # display(Markdown(f"{line}")) # display(Audio(merged_audio, rate=sample_rate, autoplay=auto_play)) def denoise( audio: np.ndarray, bias_spec: np.ndarray, denoiser_strength: float ) -> np.ndarray: audio_spec, audio_angles = transform(audio) a = bias_spec.shape[-1] b = audio_spec.shape[-1] repeats = max(1, math.ceil(b / a)) bias_spec_repeat = np.repeat(bias_spec, repeats, axis=-1)[..., :b] audio_spec_denoised = audio_spec - (bias_spec_repeat * denoiser_strength) audio_spec_denoised = np.clip(audio_spec_denoised, a_min=0.0, a_max=None) audio_denoised = inverse(audio_spec_denoised, audio_angles) return audio_denoised def stft(x, fft_size, hopsamp): """Compute and return the STFT of the supplied time domain signal x. Args: x (1-dim Numpy array): A time domain signal. fft_size (int): FFT size. Should be a power of 2, otherwise DFT will be used. hopsamp (int): Returns: The STFT. The rows are the time slices and columns are the frequency bins. """ window = np.hanning(fft_size) fft_size = int(fft_size) hopsamp = int(hopsamp) return np.array( [ np.fft.rfft(window * x[i : i + fft_size]) for i in range(0, len(x) - fft_size, hopsamp) ] ) def istft(X, fft_size, hopsamp): """Invert a STFT into a time domain signal. Args: X (2-dim Numpy array): Input spectrogram. The rows are the time slices and columns are the frequency bins. fft_size (int): hopsamp (int): The hop size, in samples. Returns: The inverse STFT. """ fft_size = int(fft_size) hopsamp = int(hopsamp) window = np.hanning(fft_size) time_slices = X.shape[0] len_samples = int(time_slices * hopsamp + fft_size) x = np.zeros(len_samples) for n, i in enumerate(range(0, len(x) - fft_size, hopsamp)): x[i : i + fft_size] += window * np.real(np.fft.irfft(X[n])) return x def inverse(magnitude, phase): recombine_magnitude_phase = np.concatenate( [magnitude * np.cos(phase), magnitude * np.sin(phase)], axis=1 ) x_org = recombine_magnitude_phase n_b, n_f, n_t = x_org.shape # pylint: disable=unpacking-non-sequence x = np.empty([n_b, n_f // 2, n_t], dtype=np.complex64) x.real = x_org[:, : n_f // 2] x.imag = x_org[:, n_f // 2 :] inverse_transform = [] for y in x: y_ = istft(y.T, fft_size=1024, hopsamp=256) inverse_transform.append(y_[None, :]) inverse_transform = np.concatenate(inverse_transform, 0) return inverse_transform def transform(input_data): x = input_data real_part = [] imag_part = [] for y in x: y_ = stft(y, fft_size=1024, hopsamp=256).T real_part.append(y_.real[None, :, :]) # pylint: disable=unsubscriptable-object imag_part.append(y_.imag[None, :, :]) # pylint: disable=unsubscriptable-object real_part = np.concatenate(real_part, 0) imag_part = np.concatenate(imag_part, 0) magnitude = np.sqrt(real_part**2 + imag_part**2) phase = np.arctan2(imag_part.data, real_part.data) return magnitude, phase #@app.get("/") #async def read_root(request: Request): # return templates.TemplateResponse("interface.html", {"request": request}) if __name__ == "__main__": # main() import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860) # main() # pass # app() # Create an instance of the FastAPI class #app = main() # Define a route for the root endpoint #def read_root(): # return {"message": "Hello, World!"}