Upload 6 files
Browse files- cog.py +180 -0
- packages.txt +1 -0
- requirements.txt +23 -0
- test_infer_batch.py +202 -0
- test_infer_batch.sh +13 -0
- test_infer_single.py +162 -0
cog.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Prediction interface for Cog ⚙️
|
2 |
+
# https://cog.run/python
|
3 |
+
|
4 |
+
from cog import BasePredictor, Input, Path
|
5 |
+
|
6 |
+
import os
|
7 |
+
import re
|
8 |
+
import torch
|
9 |
+
import torchaudio
|
10 |
+
import numpy as np
|
11 |
+
import tempfile
|
12 |
+
from einops import rearrange
|
13 |
+
from ema_pytorch import EMA
|
14 |
+
from vocos import Vocos
|
15 |
+
from pydub import AudioSegment
|
16 |
+
from model import CFM, UNetT, DiT, MMDiT
|
17 |
+
from cached_path import cached_path
|
18 |
+
from model.utils import (
|
19 |
+
get_tokenizer,
|
20 |
+
convert_char_to_pinyin,
|
21 |
+
save_spectrogram,
|
22 |
+
)
|
23 |
+
from transformers import pipeline
|
24 |
+
import librosa
|
25 |
+
|
26 |
+
device = "cuda" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
27 |
+
|
28 |
+
target_sample_rate = 24000
|
29 |
+
n_mel_channels = 100
|
30 |
+
hop_length = 256
|
31 |
+
target_rms = 0.1
|
32 |
+
nfe_step = 32 # 16, 32
|
33 |
+
cfg_strength = 2.0
|
34 |
+
ode_method = 'euler'
|
35 |
+
sway_sampling_coef = -1.0
|
36 |
+
speed = 1.0
|
37 |
+
# fix_duration = 27 # None or float (duration in seconds)
|
38 |
+
fix_duration = None
|
39 |
+
|
40 |
+
|
41 |
+
class Predictor(BasePredictor):
|
42 |
+
def load_model(exp_name, model_cls, model_cfg, ckpt_step):
|
43 |
+
checkpoint = torch.load(str(cached_path(f"hf://SWivid/F5-TTS/{exp_name}/model_{ckpt_step}.pt")), map_location=device)
|
44 |
+
vocab_char_map, vocab_size = get_tokenizer("Emilia_ZH_EN", "pinyin")
|
45 |
+
model = CFM(
|
46 |
+
transformer=model_cls(
|
47 |
+
**model_cfg,
|
48 |
+
text_num_embeds=vocab_size,
|
49 |
+
mel_dim=n_mel_channels
|
50 |
+
),
|
51 |
+
mel_spec_kwargs=dict(
|
52 |
+
target_sample_rate=target_sample_rate,
|
53 |
+
n_mel_channels=n_mel_channels,
|
54 |
+
hop_length=hop_length,
|
55 |
+
),
|
56 |
+
odeint_kwargs=dict(
|
57 |
+
method=ode_method,
|
58 |
+
),
|
59 |
+
vocab_char_map=vocab_char_map,
|
60 |
+
).to(device)
|
61 |
+
|
62 |
+
ema_model = EMA(model, include_online_model=False).to(device)
|
63 |
+
ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
|
64 |
+
ema_model.copy_params_from_ema_to_model()
|
65 |
+
|
66 |
+
return ema_model, model
|
67 |
+
def setup(self) -> None:
|
68 |
+
"""Load the model into memory to make running multiple predictions efficient"""
|
69 |
+
# self.model = torch.load("./weights.pth")
|
70 |
+
print("Loading Whisper model...")
|
71 |
+
self.pipe = pipeline(
|
72 |
+
"automatic-speech-recognition",
|
73 |
+
model="openai/whisper-large-v3-turbo",
|
74 |
+
torch_dtype=torch.float16,
|
75 |
+
device=device,
|
76 |
+
)
|
77 |
+
print("Loading F5-TTS model...")
|
78 |
+
|
79 |
+
F5TTS_model_cfg = dict(dim=1024, depth=22, heads=16, ff_mult=2, text_dim=512, conv_layers=4)
|
80 |
+
self.F5TTS_ema_model, self.F5TTS_base_model = self.load_model("F5TTS_Base", DiT, F5TTS_model_cfg, 1200000)
|
81 |
+
|
82 |
+
|
83 |
+
def predict(
|
84 |
+
self,
|
85 |
+
gen_text: str = Input(description="Text to generate"),
|
86 |
+
ref_audio_orig: Path = Input(description="Reference audio"),
|
87 |
+
remove_silence: bool = Input(description="Remove silences", default=True),
|
88 |
+
) -> Path:
|
89 |
+
"""Run a single prediction on the model"""
|
90 |
+
model_choice = "F5-TTS"
|
91 |
+
print(gen_text)
|
92 |
+
if len(gen_text) > 200:
|
93 |
+
raise gr.Error("Please keep your text under 200 chars.")
|
94 |
+
gr.Info("Converting audio...")
|
95 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f:
|
96 |
+
aseg = AudioSegment.from_file(ref_audio_orig)
|
97 |
+
audio_duration = len(aseg)
|
98 |
+
if audio_duration > 15000:
|
99 |
+
gr.Warning("Audio is over 15s, clipping to only first 15s.")
|
100 |
+
aseg = aseg[:15000]
|
101 |
+
aseg.export(f.name, format="wav")
|
102 |
+
ref_audio = f.name
|
103 |
+
ema_model = self.F5TTS_ema_model
|
104 |
+
base_model = self.F5TTS_base_model
|
105 |
+
|
106 |
+
if not ref_text.strip():
|
107 |
+
gr.Info("No reference text provided, transcribing reference audio...")
|
108 |
+
ref_text = outputs = self.pipe(
|
109 |
+
ref_audio,
|
110 |
+
chunk_length_s=30,
|
111 |
+
batch_size=128,
|
112 |
+
generate_kwargs={"task": "transcribe"},
|
113 |
+
return_timestamps=False,
|
114 |
+
)['text'].strip()
|
115 |
+
gr.Info("Finished transcription")
|
116 |
+
else:
|
117 |
+
gr.Info("Using custom reference text...")
|
118 |
+
audio, sr = torchaudio.load(ref_audio)
|
119 |
+
|
120 |
+
rms = torch.sqrt(torch.mean(torch.square(audio)))
|
121 |
+
if rms < target_rms:
|
122 |
+
audio = audio * target_rms / rms
|
123 |
+
if sr != target_sample_rate:
|
124 |
+
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
|
125 |
+
audio = resampler(audio)
|
126 |
+
audio = audio.to(device)
|
127 |
+
|
128 |
+
# Prepare the text
|
129 |
+
text_list = [ref_text + gen_text]
|
130 |
+
final_text_list = convert_char_to_pinyin(text_list)
|
131 |
+
|
132 |
+
# Calculate duration
|
133 |
+
ref_audio_len = audio.shape[-1] // hop_length
|
134 |
+
# if fix_duration is not None:
|
135 |
+
# duration = int(fix_duration * target_sample_rate / hop_length)
|
136 |
+
# else:
|
137 |
+
zh_pause_punc = r"。,、;:?!"
|
138 |
+
ref_text_len = len(ref_text) + len(re.findall(zh_pause_punc, ref_text))
|
139 |
+
gen_text_len = len(gen_text) + len(re.findall(zh_pause_punc, gen_text))
|
140 |
+
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
|
141 |
+
|
142 |
+
# inference
|
143 |
+
gr.Info(f"Generating audio using F5-TTS")
|
144 |
+
with torch.inference_mode():
|
145 |
+
generated, _ = base_model.sample(
|
146 |
+
cond=audio,
|
147 |
+
text=final_text_list,
|
148 |
+
duration=duration,
|
149 |
+
steps=nfe_step,
|
150 |
+
cfg_strength=cfg_strength,
|
151 |
+
sway_sampling_coef=sway_sampling_coef,
|
152 |
+
)
|
153 |
+
|
154 |
+
generated = generated[:, ref_audio_len:, :]
|
155 |
+
generated_mel_spec = rearrange(generated, '1 n d -> 1 d n')
|
156 |
+
gr.Info("Running vocoder")
|
157 |
+
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
158 |
+
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
159 |
+
if rms < target_rms:
|
160 |
+
generated_wave = generated_wave * rms / target_rms
|
161 |
+
|
162 |
+
# wav -> numpy
|
163 |
+
generated_wave = generated_wave.squeeze().cpu().numpy()
|
164 |
+
|
165 |
+
if remove_silence:
|
166 |
+
gr.Info("Removing audio silences... This may take a moment")
|
167 |
+
non_silent_intervals = librosa.effects.split(generated_wave, top_db=30)
|
168 |
+
non_silent_wave = np.array([])
|
169 |
+
for interval in non_silent_intervals:
|
170 |
+
start, end = interval
|
171 |
+
non_silent_wave = np.concatenate([non_silent_wave, generated_wave[start:end]])
|
172 |
+
generated_wave = non_silent_wave
|
173 |
+
|
174 |
+
|
175 |
+
# spectogram
|
176 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_wav:
|
177 |
+
wav_path = tmp_wav.name
|
178 |
+
torchaudio.save(wav_path, torch.tensor(generated_wave), target_sample_rate)
|
179 |
+
|
180 |
+
return wav_path
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate>=0.33.0
|
2 |
+
cached_path
|
3 |
+
click
|
4 |
+
datasets
|
5 |
+
einops>=0.8.0
|
6 |
+
einx>=0.3.0
|
7 |
+
ema_pytorch>=0.5.2
|
8 |
+
gradio
|
9 |
+
jieba
|
10 |
+
librosa
|
11 |
+
matplotlib
|
12 |
+
numpy<=1.26.4
|
13 |
+
pydub
|
14 |
+
pypinyin
|
15 |
+
safetensors
|
16 |
+
soundfile
|
17 |
+
tomli
|
18 |
+
torchdiffeq
|
19 |
+
tqdm>=4.65.0
|
20 |
+
transformers
|
21 |
+
vocos
|
22 |
+
wandb
|
23 |
+
x_transformers>=1.31.14
|
test_infer_batch.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
import random
|
4 |
+
from tqdm import tqdm
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torchaudio
|
9 |
+
from accelerate import Accelerator
|
10 |
+
from einops import rearrange
|
11 |
+
from ema_pytorch import EMA
|
12 |
+
from vocos import Vocos
|
13 |
+
|
14 |
+
from model import CFM, UNetT, DiT
|
15 |
+
from model.utils import (
|
16 |
+
get_tokenizer,
|
17 |
+
get_seedtts_testset_metainfo,
|
18 |
+
get_librispeech_test_clean_metainfo,
|
19 |
+
get_inference_prompt,
|
20 |
+
)
|
21 |
+
|
22 |
+
accelerator = Accelerator()
|
23 |
+
device = f"cuda:{accelerator.process_index}"
|
24 |
+
|
25 |
+
|
26 |
+
# --------------------- Dataset Settings -------------------- #
|
27 |
+
|
28 |
+
target_sample_rate = 24000
|
29 |
+
n_mel_channels = 100
|
30 |
+
hop_length = 256
|
31 |
+
target_rms = 0.1
|
32 |
+
|
33 |
+
tokenizer = "pinyin"
|
34 |
+
|
35 |
+
|
36 |
+
# ---------------------- infer setting ---------------------- #
|
37 |
+
|
38 |
+
parser = argparse.ArgumentParser(description="batch inference")
|
39 |
+
|
40 |
+
parser.add_argument('-s', '--seed', default=None, type=int)
|
41 |
+
parser.add_argument('-d', '--dataset', default="Emilia_ZH_EN")
|
42 |
+
parser.add_argument('-n', '--expname', required=True)
|
43 |
+
parser.add_argument('-c', '--ckptstep', default=1200000, type=int)
|
44 |
+
|
45 |
+
parser.add_argument('-nfe', '--nfestep', default=32, type=int)
|
46 |
+
parser.add_argument('-o', '--odemethod', default="euler")
|
47 |
+
parser.add_argument('-ss', '--swaysampling', default=-1, type=float)
|
48 |
+
|
49 |
+
parser.add_argument('-t', '--testset', required=True)
|
50 |
+
|
51 |
+
args = parser.parse_args()
|
52 |
+
|
53 |
+
|
54 |
+
seed = args.seed
|
55 |
+
dataset_name = args.dataset
|
56 |
+
exp_name = args.expname
|
57 |
+
ckpt_step = args.ckptstep
|
58 |
+
checkpoint = torch.load(f"ckpts/{exp_name}/model_{ckpt_step}.pt", map_location=device)
|
59 |
+
|
60 |
+
nfe_step = args.nfestep
|
61 |
+
ode_method = args.odemethod
|
62 |
+
sway_sampling_coef = args.swaysampling
|
63 |
+
|
64 |
+
testset = args.testset
|
65 |
+
|
66 |
+
|
67 |
+
infer_batch_size = 1 # max frames. 1 for ddp single inference (recommended)
|
68 |
+
cfg_strength = 2.
|
69 |
+
speed = 1.
|
70 |
+
use_truth_duration = False
|
71 |
+
no_ref_audio = False
|
72 |
+
|
73 |
+
|
74 |
+
if exp_name == "F5TTS_Base":
|
75 |
+
model_cls = DiT
|
76 |
+
model_cfg = dict(dim = 1024, depth = 22, heads = 16, ff_mult = 2, text_dim = 512, conv_layers = 4)
|
77 |
+
|
78 |
+
elif exp_name == "E2TTS_Base":
|
79 |
+
model_cls = UNetT
|
80 |
+
model_cfg = dict(dim = 1024, depth = 24, heads = 16, ff_mult = 4)
|
81 |
+
|
82 |
+
|
83 |
+
if testset == "ls_pc_test_clean":
|
84 |
+
metalst = "data/librispeech_pc_test_clean_cross_sentence.lst"
|
85 |
+
librispeech_test_clean_path = "<SOME_PATH>/LibriSpeech/test-clean" # test-clean path
|
86 |
+
metainfo = get_librispeech_test_clean_metainfo(metalst, librispeech_test_clean_path)
|
87 |
+
|
88 |
+
elif testset == "seedtts_test_zh":
|
89 |
+
metalst = "data/seedtts_testset/zh/meta.lst"
|
90 |
+
metainfo = get_seedtts_testset_metainfo(metalst)
|
91 |
+
|
92 |
+
elif testset == "seedtts_test_en":
|
93 |
+
metalst = "data/seedtts_testset/en/meta.lst"
|
94 |
+
metainfo = get_seedtts_testset_metainfo(metalst)
|
95 |
+
|
96 |
+
|
97 |
+
# path to save genereted wavs
|
98 |
+
if seed is None: seed = random.randint(-10000, 10000)
|
99 |
+
output_dir = f"results/{exp_name}_{ckpt_step}/{testset}/" \
|
100 |
+
f"seed{seed}_{ode_method}_nfe{nfe_step}" \
|
101 |
+
f"{f'_ss{sway_sampling_coef}' if sway_sampling_coef else ''}" \
|
102 |
+
f"_cfg{cfg_strength}_speed{speed}" \
|
103 |
+
f"{'_gt-dur' if use_truth_duration else ''}" \
|
104 |
+
f"{'_no-ref-audio' if no_ref_audio else ''}"
|
105 |
+
|
106 |
+
|
107 |
+
# -------------------------------------------------#
|
108 |
+
|
109 |
+
use_ema = True
|
110 |
+
|
111 |
+
prompts_all = get_inference_prompt(
|
112 |
+
metainfo,
|
113 |
+
speed = speed,
|
114 |
+
tokenizer = tokenizer,
|
115 |
+
target_sample_rate = target_sample_rate,
|
116 |
+
n_mel_channels = n_mel_channels,
|
117 |
+
hop_length = hop_length,
|
118 |
+
target_rms = target_rms,
|
119 |
+
use_truth_duration = use_truth_duration,
|
120 |
+
infer_batch_size = infer_batch_size,
|
121 |
+
)
|
122 |
+
|
123 |
+
# Vocoder model
|
124 |
+
local = False
|
125 |
+
if local:
|
126 |
+
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
|
127 |
+
vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
|
128 |
+
state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", map_location=device)
|
129 |
+
vocos.load_state_dict(state_dict)
|
130 |
+
vocos.eval()
|
131 |
+
else:
|
132 |
+
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
133 |
+
|
134 |
+
# Tokenizer
|
135 |
+
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
|
136 |
+
|
137 |
+
# Model
|
138 |
+
model = CFM(
|
139 |
+
transformer = model_cls(
|
140 |
+
**model_cfg,
|
141 |
+
text_num_embeds = vocab_size,
|
142 |
+
mel_dim = n_mel_channels
|
143 |
+
),
|
144 |
+
mel_spec_kwargs = dict(
|
145 |
+
target_sample_rate = target_sample_rate,
|
146 |
+
n_mel_channels = n_mel_channels,
|
147 |
+
hop_length = hop_length,
|
148 |
+
),
|
149 |
+
odeint_kwargs = dict(
|
150 |
+
method = ode_method,
|
151 |
+
),
|
152 |
+
vocab_char_map = vocab_char_map,
|
153 |
+
).to(device)
|
154 |
+
|
155 |
+
if use_ema == True:
|
156 |
+
ema_model = EMA(model, include_online_model = False).to(device)
|
157 |
+
ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
|
158 |
+
ema_model.copy_params_from_ema_to_model()
|
159 |
+
else:
|
160 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
161 |
+
|
162 |
+
if not os.path.exists(output_dir) and accelerator.is_main_process:
|
163 |
+
os.makedirs(output_dir)
|
164 |
+
|
165 |
+
# start batch inference
|
166 |
+
accelerator.wait_for_everyone()
|
167 |
+
start = time.time()
|
168 |
+
|
169 |
+
with accelerator.split_between_processes(prompts_all) as prompts:
|
170 |
+
|
171 |
+
for prompt in tqdm(prompts, disable=not accelerator.is_local_main_process):
|
172 |
+
utts, ref_rms_list, ref_mels, ref_mel_lens, total_mel_lens, final_text_list = prompt
|
173 |
+
ref_mels = ref_mels.to(device)
|
174 |
+
ref_mel_lens = torch.tensor(ref_mel_lens, dtype = torch.long).to(device)
|
175 |
+
total_mel_lens = torch.tensor(total_mel_lens, dtype = torch.long).to(device)
|
176 |
+
|
177 |
+
# Inference
|
178 |
+
with torch.inference_mode():
|
179 |
+
generated, _ = model.sample(
|
180 |
+
cond = ref_mels,
|
181 |
+
text = final_text_list,
|
182 |
+
duration = total_mel_lens,
|
183 |
+
lens = ref_mel_lens,
|
184 |
+
steps = nfe_step,
|
185 |
+
cfg_strength = cfg_strength,
|
186 |
+
sway_sampling_coef = sway_sampling_coef,
|
187 |
+
no_ref_audio = no_ref_audio,
|
188 |
+
seed = seed,
|
189 |
+
)
|
190 |
+
# Final result
|
191 |
+
for i, gen in enumerate(generated):
|
192 |
+
gen = gen[ref_mel_lens[i]:total_mel_lens[i], :].unsqueeze(0)
|
193 |
+
gen_mel_spec = rearrange(gen, '1 n d -> 1 d n')
|
194 |
+
generated_wave = vocos.decode(gen_mel_spec.cpu())
|
195 |
+
if ref_rms_list[i] < target_rms:
|
196 |
+
generated_wave = generated_wave * ref_rms_list[i] / target_rms
|
197 |
+
torchaudio.save(f"{output_dir}/{utts[i]}.wav", generated_wave, target_sample_rate)
|
198 |
+
|
199 |
+
accelerator.wait_for_everyone()
|
200 |
+
if accelerator.is_main_process:
|
201 |
+
timediff = time.time() - start
|
202 |
+
print(f"Done batch inference in {timediff / 60 :.2f} minutes.")
|
test_infer_batch.sh
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
# e.g. F5-TTS, 16 NFE
|
4 |
+
accelerate launch test_infer_batch.py -n "F5TTS_Base" -t "seedtts_test_zh" -nfe 16
|
5 |
+
accelerate launch test_infer_batch.py -n "F5TTS_Base" -t "seedtts_test_en" -nfe 16
|
6 |
+
accelerate launch test_infer_batch.py -n "F5TTS_Base" -t "ls_pc_test_clean" -nfe 16
|
7 |
+
|
8 |
+
# e.g. Vanilla E2 TTS, 32 NFE
|
9 |
+
accelerate launch test_infer_batch.py -n "E2TTS_Base" -t "seedtts_test_zh" -o "midpoint" -ss 0
|
10 |
+
accelerate launch test_infer_batch.py -n "E2TTS_Base" -t "seedtts_test_en" -o "midpoint" -ss 0
|
11 |
+
accelerate launch test_infer_batch.py -n "E2TTS_Base" -t "ls_pc_test_clean" -o "midpoint" -ss 0
|
12 |
+
|
13 |
+
# etc.
|
test_infer_single.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torchaudio
|
6 |
+
from einops import rearrange
|
7 |
+
from ema_pytorch import EMA
|
8 |
+
from vocos import Vocos
|
9 |
+
|
10 |
+
from model import CFM, UNetT, DiT, MMDiT
|
11 |
+
from model.utils import (
|
12 |
+
get_tokenizer,
|
13 |
+
convert_char_to_pinyin,
|
14 |
+
save_spectrogram,
|
15 |
+
)
|
16 |
+
|
17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
|
19 |
+
|
20 |
+
# --------------------- Dataset Settings -------------------- #
|
21 |
+
|
22 |
+
target_sample_rate = 24000
|
23 |
+
n_mel_channels = 100
|
24 |
+
hop_length = 256
|
25 |
+
target_rms = 0.1
|
26 |
+
|
27 |
+
tokenizer = "pinyin"
|
28 |
+
dataset_name = "Emilia_ZH_EN"
|
29 |
+
|
30 |
+
|
31 |
+
# ---------------------- infer setting ---------------------- #
|
32 |
+
|
33 |
+
seed = None # int | None
|
34 |
+
|
35 |
+
exp_name = "F5TTS_Base" # F5TTS_Base | E2TTS_Base
|
36 |
+
ckpt_step = 1200000
|
37 |
+
|
38 |
+
nfe_step = 32 # 16, 32
|
39 |
+
cfg_strength = 2.
|
40 |
+
ode_method = 'euler' # euler | midpoint
|
41 |
+
sway_sampling_coef = -1.
|
42 |
+
speed = 1.
|
43 |
+
fix_duration = 27 # None (will linear estimate. if code-switched, consider fix) | float (total in seconds, include ref audio)
|
44 |
+
|
45 |
+
if exp_name == "F5TTS_Base":
|
46 |
+
model_cls = DiT
|
47 |
+
model_cfg = dict(dim = 1024, depth = 22, heads = 16, ff_mult = 2, text_dim = 512, conv_layers = 4)
|
48 |
+
|
49 |
+
elif exp_name == "E2TTS_Base":
|
50 |
+
model_cls = UNetT
|
51 |
+
model_cfg = dict(dim = 1024, depth = 24, heads = 16, ff_mult = 4)
|
52 |
+
|
53 |
+
checkpoint = torch.load(f"ckpts/{exp_name}/model_{ckpt_step}.pt", map_location=device)
|
54 |
+
output_dir = "tests"
|
55 |
+
|
56 |
+
ref_audio = "tests/ref_audio/test_en_1_ref_short.wav"
|
57 |
+
ref_text = "Some call me nature, others call me mother nature."
|
58 |
+
gen_text = "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences."
|
59 |
+
|
60 |
+
# ref_audio = "tests/ref_audio/test_zh_1_ref_short.wav"
|
61 |
+
# ref_text = "对,这就是我,万人敬仰的太乙真人。"
|
62 |
+
# gen_text = "突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:\"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?\""
|
63 |
+
|
64 |
+
|
65 |
+
# -------------------------------------------------#
|
66 |
+
|
67 |
+
use_ema = True
|
68 |
+
|
69 |
+
if not os.path.exists(output_dir):
|
70 |
+
os.makedirs(output_dir)
|
71 |
+
|
72 |
+
# Vocoder model
|
73 |
+
local = False
|
74 |
+
if local:
|
75 |
+
vocos_local_path = "../checkpoints/charactr/vocos-mel-24khz"
|
76 |
+
vocos = Vocos.from_hparams(f"{vocos_local_path}/config.yaml")
|
77 |
+
state_dict = torch.load(f"{vocos_local_path}/pytorch_model.bin", map_location=device)
|
78 |
+
vocos.load_state_dict(state_dict)
|
79 |
+
vocos.eval()
|
80 |
+
else:
|
81 |
+
vocos = Vocos.from_pretrained("charactr/vocos-mel-24khz")
|
82 |
+
|
83 |
+
# Tokenizer
|
84 |
+
vocab_char_map, vocab_size = get_tokenizer(dataset_name, tokenizer)
|
85 |
+
|
86 |
+
# Model
|
87 |
+
model = CFM(
|
88 |
+
transformer = model_cls(
|
89 |
+
**model_cfg,
|
90 |
+
text_num_embeds = vocab_size,
|
91 |
+
mel_dim = n_mel_channels
|
92 |
+
),
|
93 |
+
mel_spec_kwargs = dict(
|
94 |
+
target_sample_rate = target_sample_rate,
|
95 |
+
n_mel_channels = n_mel_channels,
|
96 |
+
hop_length = hop_length,
|
97 |
+
),
|
98 |
+
odeint_kwargs = dict(
|
99 |
+
method = ode_method,
|
100 |
+
),
|
101 |
+
vocab_char_map = vocab_char_map,
|
102 |
+
).to(device)
|
103 |
+
|
104 |
+
if use_ema == True:
|
105 |
+
ema_model = EMA(model, include_online_model = False).to(device)
|
106 |
+
ema_model.load_state_dict(checkpoint['ema_model_state_dict'])
|
107 |
+
ema_model.copy_params_from_ema_to_model()
|
108 |
+
else:
|
109 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
110 |
+
|
111 |
+
# Audio
|
112 |
+
audio, sr = torchaudio.load(ref_audio)
|
113 |
+
rms = torch.sqrt(torch.mean(torch.square(audio)))
|
114 |
+
if rms < target_rms:
|
115 |
+
audio = audio * target_rms / rms
|
116 |
+
if sr != target_sample_rate:
|
117 |
+
resampler = torchaudio.transforms.Resample(sr, target_sample_rate)
|
118 |
+
audio = resampler(audio)
|
119 |
+
audio = audio.to(device)
|
120 |
+
|
121 |
+
# Text
|
122 |
+
text_list = [ref_text + gen_text]
|
123 |
+
if tokenizer == "pinyin":
|
124 |
+
final_text_list = convert_char_to_pinyin(text_list)
|
125 |
+
else:
|
126 |
+
final_text_list = [text_list]
|
127 |
+
print(f"text : {text_list}")
|
128 |
+
print(f"pinyin: {final_text_list}")
|
129 |
+
|
130 |
+
# Duration
|
131 |
+
ref_audio_len = audio.shape[-1] // hop_length
|
132 |
+
if fix_duration is not None:
|
133 |
+
duration = int(fix_duration * target_sample_rate / hop_length)
|
134 |
+
else: # simple linear scale calcul
|
135 |
+
zh_pause_punc = r"。,、;:?!"
|
136 |
+
ref_text_len = len(ref_text) + len(re.findall(zh_pause_punc, ref_text))
|
137 |
+
gen_text_len = len(gen_text) + len(re.findall(zh_pause_punc, gen_text))
|
138 |
+
duration = ref_audio_len + int(ref_audio_len / ref_text_len * gen_text_len / speed)
|
139 |
+
|
140 |
+
# Inference
|
141 |
+
with torch.inference_mode():
|
142 |
+
generated, trajectory = model.sample(
|
143 |
+
cond = audio,
|
144 |
+
text = final_text_list,
|
145 |
+
duration = duration,
|
146 |
+
steps = nfe_step,
|
147 |
+
cfg_strength = cfg_strength,
|
148 |
+
sway_sampling_coef = sway_sampling_coef,
|
149 |
+
seed = seed,
|
150 |
+
)
|
151 |
+
print(f"Generated mel: {generated.shape}")
|
152 |
+
|
153 |
+
# Final result
|
154 |
+
generated = generated[:, ref_audio_len:, :]
|
155 |
+
generated_mel_spec = rearrange(generated, '1 n d -> 1 d n')
|
156 |
+
generated_wave = vocos.decode(generated_mel_spec.cpu())
|
157 |
+
if rms < target_rms:
|
158 |
+
generated_wave = generated_wave * rms / target_rms
|
159 |
+
|
160 |
+
save_spectrogram(generated_mel_spec[0].cpu().numpy(), f"{output_dir}/test_single.png")
|
161 |
+
torchaudio.save(f"{output_dir}/test_single.wav", generated_wave, target_sample_rate)
|
162 |
+
print(f"Generated wav: {generated_wave.shape}")
|