JRQi commited on
Commit
db9e998
1 Parent(s): 97d7261

Update game3.py

Browse files
Files changed (1) hide show
  1. game3.py +5 -11
game3.py CHANGED
@@ -4,6 +4,8 @@ import time
4
  import pandas as pd
5
  import gradio as gr
6
  import numpy as np
 
 
7
 
8
  def read3(num_selected_former):
9
  fname = 'data3_convai2_inferred.txt'
@@ -41,10 +43,8 @@ def read3(num_selected_former):
41
  def func3(lang_selected, num_selected, human_predict, num1, num2, user_important):
42
  chatbot = []
43
  # num1: Human score; num2: AI score
44
- if lang_selected in ['en']:
45
- fname = 'data1_en.txt'
46
- else:
47
- fname = 'data1_nl_10.txt'
48
  with open(fname) as f:
49
  content = f.readlines()
50
  text = eval(content[int(num_selected*2)])
@@ -223,10 +223,7 @@ def func3(lang_selected, num_selected, human_predict, num1, num2, user_important
223
  return ai_predict, chatbot, num1, num2, tot_scores
224
 
225
  def interpre3(lang_selected, num_selected):
226
- if lang_selected in ['en']:
227
- fname = 'data1_en.txt'
228
- else:
229
- fname = 'data1_nl_10.txt'
230
  with open(fname) as f:
231
  content = f.readlines()
232
  text = eval(content[int(num_selected*2)])
@@ -291,9 +288,6 @@ def func3_written(text_written, human_predict, lang_written):
291
  '''
292
 
293
  # (START) off-the-shelf version
294
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
295
- from transformers import pipeline
296
-
297
 
298
  # tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
299
  # model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
 
4
  import pandas as pd
5
  import gradio as gr
6
  import numpy as np
7
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
8
+ from transformers import pipeline
9
 
10
  def read3(num_selected_former):
11
  fname = 'data3_convai2_inferred.txt'
 
43
  def func3(lang_selected, num_selected, human_predict, num1, num2, user_important):
44
  chatbot = []
45
  # num1: Human score; num2: AI score
46
+ fname = 'data3_convai2_inferred.txt'
47
+
 
 
48
  with open(fname) as f:
49
  content = f.readlines()
50
  text = eval(content[int(num_selected*2)])
 
223
  return ai_predict, chatbot, num1, num2, tot_scores
224
 
225
  def interpre3(lang_selected, num_selected):
226
+ fname = 'data3_convai2_inferred.txt'
 
 
 
227
  with open(fname) as f:
228
  content = f.readlines()
229
  text = eval(content[int(num_selected*2)])
 
288
  '''
289
 
290
  # (START) off-the-shelf version
 
 
 
291
 
292
  # tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
293
  # model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")