Spaces:
Runtime error
Runtime error
Update game3.py
Browse files
game3.py
CHANGED
@@ -40,59 +40,28 @@ def func3(num_selected, human_predict, num1, num2, user_important):
|
|
40 |
|
41 |
golden_label = (text['label']^1) * 100
|
42 |
|
43 |
-
|
44 |
-
'''
|
45 |
-
# (START) API version -- quick
|
46 |
-
|
47 |
-
API_URL = "https://api-inference.huggingface.co/models/nlptown/bert-base-multilingual-uncased-sentiment"
|
48 |
-
# API_URL = "https://api-inference.huggingface.co/models/cmarkea/distilcamembert-base-sentiment"
|
49 |
-
headers = {"Authorization": "Bearer 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"}
|
50 |
-
|
51 |
-
response = requests.post(API_URL, headers=headers, json=text['text'])
|
52 |
-
output = response.json()
|
53 |
-
|
54 |
-
# result = dict()
|
55 |
-
star2num = {
|
56 |
-
"5 stars": 100,
|
57 |
-
"4 stars": 75,
|
58 |
-
"3 stars": 50,
|
59 |
-
"2 stars": 25,
|
60 |
-
"1 star": 0,
|
61 |
-
}
|
62 |
-
|
63 |
-
print(output)
|
64 |
-
out = output[0][0]
|
65 |
-
# (END) API version
|
66 |
-
'''
|
67 |
-
|
68 |
# (START) off-the-shelf version -- slow at the beginning
|
69 |
# Load model directly
|
70 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
71 |
-
|
72 |
-
tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
73 |
-
model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
74 |
-
|
75 |
# Use a pipeline as a high-level helper
|
76 |
-
from transformers import pipeline
|
77 |
|
78 |
-
classifier = pipeline("
|
79 |
output = classifier([text['text']])
|
80 |
|
81 |
-
star2num = {
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
}
|
88 |
print(output)
|
89 |
out = output[0]
|
90 |
|
91 |
# (END) off-the-shelf version
|
92 |
|
93 |
-
ai_predict =
|
94 |
-
|
95 |
-
|
96 |
user_select = "You focused on "
|
97 |
flag_select = False
|
98 |
if user_important == "":
|
@@ -251,52 +220,29 @@ def func3_written(text_written, human_predict, lang_written):
|
|
251 |
chatbot = []
|
252 |
# num1: Human score; num2: AI score
|
253 |
|
254 |
-
'''
|
255 |
-
# (START) API version
|
256 |
-
|
257 |
-
API_URL = "https://api-inference.huggingface.co/models/nlptown/bert-base-multilingual-uncased-sentiment"
|
258 |
-
# API_URL = "https://api-inference.huggingface.co/models/cmarkea/distilcamembert-base-sentiment"
|
259 |
-
headers = {"Authorization": "Bearer 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"}
|
260 |
-
|
261 |
-
response = requests.post(API_URL, headers=headers, json=text_written)
|
262 |
-
output = response.json()
|
263 |
-
|
264 |
-
# result = dict()
|
265 |
-
star2num = {
|
266 |
-
"5 stars": 100,
|
267 |
-
"4 stars": 75,
|
268 |
-
"3 stars": 50,
|
269 |
-
"2 stars": 25,
|
270 |
-
"1 star": 0,
|
271 |
-
}
|
272 |
-
|
273 |
-
out = output[0][0]
|
274 |
-
# (END) API version
|
275 |
-
'''
|
276 |
-
|
277 |
# (START) off-the-shelf version
|
278 |
|
279 |
# tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
280 |
# model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
281 |
|
282 |
-
classifier = pipeline("
|
283 |
-
|
284 |
output = classifier([text_written])
|
285 |
|
286 |
-
star2num = {
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
}
|
293 |
print(output)
|
294 |
out = output[0]
|
295 |
# (END) off-the-shelf version
|
296 |
|
297 |
|
298 |
-
ai_predict = star2num[out['label']]
|
299 |
-
|
300 |
|
301 |
if abs(ai_predict - human_predict) <= 12.5:
|
302 |
chatbot.append(("AI gives it a close score! 🎉", "⬅️ Feel free to try another one! ⬅️"))
|
@@ -309,13 +255,9 @@ def func3_written(text_written, human_predict, lang_written):
|
|
309 |
|
310 |
import shap
|
311 |
|
312 |
-
|
313 |
-
if lang_written == "Dutch":
|
314 |
-
sentiment_classifier = pipeline("text-classification", model='DTAI-KULeuven/robbert-v2-dutch-sentiment', return_all_scores=True)
|
315 |
-
else:
|
316 |
-
sentiment_classifier = pipeline("text-classification", model='distilbert-base-uncased-finetuned-sst-2-english', return_all_scores=True)
|
317 |
|
318 |
-
explainer = shap.Explainer(
|
319 |
|
320 |
shap_values = explainer([text_written])
|
321 |
interpretation = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
|
|
|
40 |
|
41 |
golden_label = (text['label']^1) * 100
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
# (START) off-the-shelf version -- slow at the beginning
|
44 |
# Load model directly
|
|
|
|
|
|
|
|
|
|
|
45 |
# Use a pipeline as a high-level helper
|
|
|
46 |
|
47 |
+
classifier = pipeline("text-classification", model="padmajabfrl/Gender-Classification")
|
48 |
output = classifier([text['text']])
|
49 |
|
50 |
+
# star2num = {
|
51 |
+
# "5 stars": 100,
|
52 |
+
# "4 stars": 75,
|
53 |
+
# "3 stars": 50,
|
54 |
+
# "2 stars": 25,
|
55 |
+
# "1 star": 0,
|
56 |
+
# }
|
57 |
print(output)
|
58 |
out = output[0]
|
59 |
|
60 |
# (END) off-the-shelf version
|
61 |
|
62 |
+
# ai_predict = out['label']
|
63 |
+
ai_predict = out['score']
|
64 |
+
|
65 |
user_select = "You focused on "
|
66 |
flag_select = False
|
67 |
if user_important == "":
|
|
|
220 |
chatbot = []
|
221 |
# num1: Human score; num2: AI score
|
222 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
# (START) off-the-shelf version
|
224 |
|
225 |
# tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
226 |
# model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
227 |
|
228 |
+
classifier = pipeline("text-classification", model="padmajabfrl/Gender-Classification")
|
229 |
+
|
230 |
output = classifier([text_written])
|
231 |
|
232 |
+
# star2num = {
|
233 |
+
# "5 stars": 100,
|
234 |
+
# "4 stars": 75,
|
235 |
+
# "3 stars": 50,
|
236 |
+
# "2 stars": 25,
|
237 |
+
# "1 star": 0,
|
238 |
+
# }
|
239 |
print(output)
|
240 |
out = output[0]
|
241 |
# (END) off-the-shelf version
|
242 |
|
243 |
|
244 |
+
# ai_predict = star2num[out['label']]
|
245 |
+
ai_predict = out['score']
|
246 |
|
247 |
if abs(ai_predict - human_predict) <= 12.5:
|
248 |
chatbot.append(("AI gives it a close score! 🎉", "⬅️ Feel free to try another one! ⬅️"))
|
|
|
255 |
|
256 |
import shap
|
257 |
|
258 |
+
gender_classifier = pipeline("text-classification", model="padmajabfrl/Gender-Classification", return_all_scores=True)
|
|
|
|
|
|
|
|
|
259 |
|
260 |
+
explainer = shap.Explainer(gender_classifier)
|
261 |
|
262 |
shap_values = explainer([text_written])
|
263 |
interpretation = list(zip(shap_values.data[0], shap_values.values[0, :, 1]))
|