Spaces:
Runtime error
Runtime error
File size: 6,212 Bytes
dd4bbec 1352961 2bd8a0f 1352961 99e6996 1352961 99e6996 1352961 99e6996 1352961 99e6996 1352961 99e6996 a939268 99e6996 a939268 99e6996 a939268 1352961 4d5c750 1352961 99e6996 1352961 99e6996 1352961 99e6996 1352961 182dc7c 1352961 99e6996 1352961 99e6996 182dc7c 99e6996 182dc7c 99e6996 1352961 2eef1ae 60ed75d dd4bbec 99e6996 2eef1ae 99e6996 dd4bbec 99e6996 1352961 2bd8a0f dd4bbec 99e6996 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import gradio as gr
import json
import os
import numexpr
from groq import Groq
from groq.types.chat.chat_completion_tool_param import ChatCompletionToolParam
MODEL = "llama3-groq-70b-8192-tool-use-preview"
client = Groq(api_key=os.environ["GROQ_API_KEY"])
def evaluate_math_expression(expression: str):
return json.dumps(numexpr.evaluate(expression).tolist())
calculator_tool: ChatCompletionToolParam = {
"type": "function",
"function": {
"name": "evaluate_math_expression",
"description": "Calculator tool: use this for evaluating numeric expressions with Python. Ensure the expression is valid Python syntax (e.g., use '**' for exponentiation, not '^').",
"parameters": {
"type": "object",
"properties": {
"expression": {
"type": "string",
"description": "The mathematical expression to evaluate. Must be valid Python syntax.",
},
},
"required": ["expression"],
},
},
}
tools = [calculator_tool]
def call_function(tool_call, available_functions):
function_name = tool_call.function.name
if function_name not in available_functions:
return {
"tool_call_id": tool_call.id,
"role": "tool",
"content": f"Function {function_name} does not exist.",
}
function_to_call = available_functions[function_name]
function_args = json.loads(tool_call.function.arguments)
function_response = function_to_call(**function_args)
return {
"tool_call_id": tool_call.id,
"role": "tool",
"name": function_name,
"content": json.dumps(function_response),
}
def get_model_response(messages, inner_messages, message, system_message):
messages_for_model = []
for msg in messages:
native_messages = msg.get("metadata", {}).get("native_messages", [msg])
if isinstance(native_messages, list):
messages_for_model.extend(native_messages)
else:
messages_for_model.append(native_messages)
messages_for_model.insert(
0,
{
"role": "system",
"content": system_message,
},
)
messages_for_model.append(
{
"role": "user",
"content": message,
}
)
messages_for_model.extend(inner_messages)
try:
return client.chat.completions.create(
model=MODEL,
messages=messages_for_model,
tools=tools,
temperature=0.5,
top_p=0.65,
max_tokens=4096,
)
except Exception as e:
print(f"An error occurred while getting model response: {str(e)}")
print(messages_for_model)
return None
def respond(message, history, system_message):
inner_history = []
available_functions = {
"evaluate_math_expression": evaluate_math_expression,
}
assistant_content = ""
assistant_native_message_list = []
while True:
response_message = (
get_model_response(history, inner_history, message, system_message)
.choices[0]
.message
)
if not response_message.tool_calls and response_message.content is not None:
break
if response_message.tool_calls is not None:
assistant_native_message_list.append(response_message)
inner_history.append(response_message)
assistant_content += (
"```json\n"
+ json.dumps(
[
tool_call.model_dump()
for tool_call in response_message.tool_calls
],
indent=2,
)
+ "\n```\n"
)
assistant_message = {
"role": "assistant",
"content": assistant_content,
"metadata": {"native_messages": assistant_native_message_list},
}
yield assistant_message
for tool_call in response_message.tool_calls:
function_response = call_function(tool_call, available_functions)
assistant_content += (
"```json\n"
+ json.dumps(
{
"name": tool_call.function.name,
"arguments": json.loads(tool_call.function.arguments),
"response": json.loads(function_response["content"]),
},
indent=2,
)
+ "\n```\n"
)
native_tool_message = {
"tool_call_id": tool_call.id,
"role": "tool",
"content": function_response["content"],
}
assistant_native_message_list.append(
native_tool_message
)
tool_message = {
"role": "assistant",
"content": assistant_content,
"metadata": {"native_messages": assistant_native_message_list},
}
yield tool_message
inner_history.append(native_tool_message)
assistant_content += response_message.content
assistant_native_message_list.append(response_message)
final_message = {
"role": "assistant",
"content": assistant_content,
"metadata": {"native_messages": assistant_native_message_list},
}
yield final_message
system_prompt = "You are a friendly Chatbot with access to a calculator. Don't mention that we are using functions defined in Python."
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value=system_prompt,
label="System message",
),
],
type="messages",
title="Groq Tool Use Chat",
description="This chatbot uses the `llama3-groq-70b-8192-tool-use-preview` LLM with tool use capabilities, including a calculator function.",
)
if __name__ == "__main__":
demo.launch()
|