Spaces:
Runtime error
Runtime error
import gradio as gr | |
import json | |
import os | |
import numexpr | |
from groq import Groq | |
from groq.types.chat.chat_completion_tool_param import ChatCompletionToolParam | |
MODEL = "llama3-groq-8b-8192-tool-use-preview" | |
client = Groq(api_key=os.environ["GROQ_API_KEY"]) | |
def evaluate_math_expression(expression: str): | |
return json.dumps(numexpr.evaluate(expression).tolist()) | |
calculator_tool: ChatCompletionToolParam = { | |
"type": "function", | |
"function": { | |
"name": "evaluate_math_expression", | |
"description": | |
"Calculator tool: use this for evaluating numeric expressions with Python. Ensure the expression is valid Python syntax (e.g., use '**' for exponentiation, not '^').", | |
"parameters": { | |
"type": "object", | |
"properties": { | |
"expression": { | |
"type": "string", | |
"description": "The mathematical expression to evaluate. Must be valid Python syntax.", | |
}, | |
}, | |
"required": ["expression"], | |
}, | |
}, | |
} | |
tools = [calculator_tool] | |
def call_function(tool_call, available_functions): | |
function_name = tool_call.function.name | |
if function_name not in available_functions: | |
return { | |
"tool_call_id": tool_call.id, | |
"role": "tool", | |
"content": f"Function {function_name} does not exist.", | |
} | |
function_to_call = available_functions[function_name] | |
function_args = json.loads(tool_call.function.arguments) | |
function_response = function_to_call(**function_args) | |
return { | |
"tool_call_id": tool_call.id, | |
"role": "tool", | |
"name": function_name, | |
"content": json.dumps(function_response), | |
} | |
def get_model_response(messages): | |
return client.chat.completions.create( | |
model=MODEL, | |
messages=messages, | |
tools=tools, | |
temperature=0.5, | |
top_p=0.65, | |
max_tokens=4096, | |
) | |
def respond(message, history, system_message): | |
conversation = [{"role": "system", "content": system_message}] | |
for human, assistant in history: | |
conversation.append({"role": "user", "content": human}) | |
conversation.append({"role": "assistant", "content": assistant}) | |
conversation.append({"role": "user", "content": message}) | |
available_functions = { | |
"evaluate_math_expression": evaluate_math_expression, | |
} | |
function_calls = [] | |
while True: | |
response = get_model_response(conversation) | |
response_message = response.choices[0].message | |
conversation.append(response_message) | |
if not response_message.tool_calls and response_message.content is not None: | |
break | |
if response_message.tool_calls is not None: | |
for tool_call in response_message.tool_calls: | |
function_call = { | |
"name": tool_call.function.name, | |
"arguments": json.loads(tool_call.function.arguments) | |
} | |
function_calls.append(function_call) | |
function_response = call_function(tool_call, available_functions) | |
conversation.append(function_response) | |
function_calls.append({ | |
"name": function_response["name"], | |
"result": json.loads(function_response["content"]) | |
}) | |
function_calls_md = "\n\n" | |
for i in range(0, len(function_calls), 2): | |
call = function_calls[i] | |
result = function_calls[i + 1] if i + 1 < len(function_calls) else None | |
function_calls_md += f"**Tool call:**\n```json\n{json.dumps({'name': call['name'], 'arguments': call['arguments'], 'result': result['result'] if result else None}, indent=2)}\n```\n" | |
return response_message.content + function_calls_md | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot with access to a calculator. Don't mention that we are using functions defined in Python.", label="System message"), | |
], | |
title="Groq Tool Use Chat", | |
description="This chatbot uses the Groq LLM with tool use capabilities, including a calculator function.", | |
) | |
if __name__ == "__main__": | |
demo.launch() |