Spaces:
Runtime error
Runtime error
GuruCharan
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
from diffusers import StableDiffusionPipeline
|
4 |
+
import torch
|
5 |
+
from transformers import MarianMTModel, MarianTokenizer, AutoModelForCausalLM, AutoTokenizer
|
6 |
+
|
7 |
+
|
8 |
+
# Load the pre-trained Stable Diffusion model for text-to-image
|
9 |
+
model_id = "CompVis/stable-diffusion-v1-4"
|
10 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id)
|
11 |
+
pipe = pipe.to("cuda") # Use GPU if available
|
12 |
+
|
13 |
+
# Load the MarianMT translation model
|
14 |
+
translation_model_name = "Helsinki-NLP/opus-mt-en-de" # English to German model
|
15 |
+
tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
|
16 |
+
translation_model = MarianMTModel.from_pretrained(translation_model_name)
|
17 |
+
|
18 |
+
# Load the chatbot model (DialoGPT small model)
|
19 |
+
chatbot_model_name = "microsoft/DialoGPT-small"
|
20 |
+
chatbot_tokenizer = AutoTokenizer.from_pretrained(chatbot_model_name)
|
21 |
+
chatbot_model = AutoModelForCausalLM.from_pretrained(chatbot_model_name)
|
22 |
+
|
23 |
+
# Text-to-image function
|
24 |
+
def generate_image(prompt):
|
25 |
+
image = pipe(prompt).images[0]
|
26 |
+
return image
|
27 |
+
|
28 |
+
# Text translation function
|
29 |
+
def translate_text(text, src_lang, tgt_lang):
|
30 |
+
# Load the appropriate translation model based on selected languages
|
31 |
+
translation_model_name = f"Helsinki-NLP/opus-mt-{src_lang}-{tgt_lang}"
|
32 |
+
tokenizer = MarianTokenizer.from_pretrained(translation_model_name)
|
33 |
+
translation_model = MarianMTModel.from_pretrained(translation_model_name)
|
34 |
+
|
35 |
+
# Tokenize input text
|
36 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True)
|
37 |
+
|
38 |
+
# Generate translation
|
39 |
+
translated = translation_model.generate(**inputs)
|
40 |
+
|
41 |
+
# Decode and return the translated text
|
42 |
+
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
|
43 |
+
return translated_text
|
44 |
+
|
45 |
+
# Chatbot function (using DialoGPT)
|
46 |
+
chat_history = [] # To store the conversation history
|
47 |
+
|
48 |
+
def chatbot_response(user_input):
|
49 |
+
global chat_history
|
50 |
+
|
51 |
+
# Handle questions like "explain what's ai" or "what is ai"
|
52 |
+
if "explain what's ai" in user_input.lower() or "what is ai" in user_input.lower():
|
53 |
+
response = "AI, or Artificial Intelligence, is a branch of computer science that aims to create machines capable of intelligent behavior. This includes tasks like learning, problem-solving, and decision-making, traditionally performed by humans."
|
54 |
+
else:
|
55 |
+
# Tokenize user input
|
56 |
+
new_input_ids = chatbot_tokenizer.encode(user_input + chatbot_tokenizer.eos_token, return_tensors="pt")
|
57 |
+
|
58 |
+
# Append new user input to chat history
|
59 |
+
bot_input_ids = torch.cat([torch.tensor(chat_history), new_input_ids], dim=-1) if chat_history else new_input_ids
|
60 |
+
|
61 |
+
# Generate a response from the model
|
62 |
+
chat_history_ids = chatbot_model.generate(bot_input_ids, max_length=1000, pad_token_id=chatbot_tokenizer.eos_token_id)
|
63 |
+
|
64 |
+
# Decode the response
|
65 |
+
response = chatbot_tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)
|
66 |
+
|
67 |
+
# Update chat history with the current conversation
|
68 |
+
chat_history.append(new_input_ids)
|
69 |
+
|
70 |
+
return response
|
71 |
+
|
72 |
+
# Create Gradio interface
|
73 |
+
with gr.Blocks() as interface:
|
74 |
+
gr.Markdown("# **The AI Playground** π€β¨")
|
75 |
+
|
76 |
+
with gr.Tab("Text-to-Image"):
|
77 |
+
gr.Markdown("## **Text-to-Image Wizard** πͺ")
|
78 |
+
with gr.Row():
|
79 |
+
text_input = gr.Textbox(label="Imagine...", lines=2, placeholder="A whimsical robot dancing in a rainbow field...")
|
80 |
+
image_output = gr.Image(label="Behold!")
|
81 |
+
generate_button = gr.Button("Summon Image")
|
82 |
+
generate_button.click(fn=generate_image, inputs=text_input, outputs=image_output)
|
83 |
+
|
84 |
+
with gr.Tab("Text Translator"):
|
85 |
+
gr.Markdown("## **Global Translator** π")
|
86 |
+
with gr.Row():
|
87 |
+
text_input_translate = gr.Textbox(label="Say something...", placeholder="Type here...")
|
88 |
+
src_lang = gr.Dropdown(label="From", choices=["en", "de", "fr", "es"], value="en")
|
89 |
+
tgt_lang = gr.Dropdown(label="To", choices=["en", "de", "fr", "es"], value="de")
|
90 |
+
translated_text = gr.Textbox(label="Translation...", lines=2)
|
91 |
+
translate_button = gr.Button("Translate!")
|
92 |
+
translate_button.click(fn=translate_text, inputs=[text_input_translate, src_lang, tgt_lang], outputs=translated_text)
|
93 |
+
|
94 |
+
with gr.Tab("Chatbot"):
|
95 |
+
gr.Markdown("## **Chat with the AI** π¬")
|
96 |
+
with gr.Row():
|
97 |
+
chatbot_input = gr.Textbox(label="Your Message", placeholder="Let's chat! Ask anything...")
|
98 |
+
chatbot_output = gr.Textbox(label="AI's Wisdom", lines=5)
|
99 |
+
chat_button = gr.Button("Send β¨")
|
100 |
+
chat_button.click(fn=chatbot_response, inputs=chatbot_input, outputs=chatbot_output)
|
101 |
+
|
102 |
+
|
103 |
+
# Launch the Gradio app
|
104 |
+
interface.launch(share=True)
|