File size: 5,981 Bytes
1b92e8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5aeb32a
 
1b92e8f
5aeb32a
 
1b92e8f
 
 
 
 
 
 
 
 
 
 
 
 
5aeb32a
1b92e8f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import torch
from diffusers.loaders import AttnProcsLayers
from transformers import CLIPTextModel, CLIPTokenizer
from modules.beats.BEATs import BEATs, BEATsConfig
from modules.AudioToken.embedder import FGAEmbedder
from diffusers import AutoencoderKL, UNet2DConditionModel
from diffusers.models.attention_processor import LoRAAttnProcessor
from diffusers import StableDiffusionPipeline
import numpy as np
import gradio as gr


class AudioTokenWrapper(torch.nn.Module):
    """Simple wrapper module for Stable Diffusion that holds all the models together"""

    def __init__(
        self,
        lora,
        device,
    ):

        super().__init__()
        # Load scheduler and models
        self.tokenizer = CLIPTokenizer.from_pretrained(
            "CompVis/stable-diffusion-v1-4", subfolder="tokenizer"
        )
        self.text_encoder = CLIPTextModel.from_pretrained(
            "CompVis/stable-diffusion-v1-4", subfolder="text_encoder", revision=None
        )
        self.unet = UNet2DConditionModel.from_pretrained(
            "CompVis/stable-diffusion-v1-4", subfolder="unet", revision=None
        )
        self.vae = AutoencoderKL.from_pretrained(
            "CompVis/stable-diffusion-v1-4", subfolder="vae", revision=None
        )

        checkpoint = torch.load(
            'models/BEATs_iter3_plus_AS2M_finetuned_on_AS2M_cpt2.pt')
        cfg = BEATsConfig(checkpoint['cfg'])
        self.aud_encoder = BEATs(cfg)
        self.aud_encoder.load_state_dict(checkpoint['model'])
        self.aud_encoder.predictor = None
        input_size = 768 * 3
        self.embedder = FGAEmbedder(input_size=input_size, output_size=768)

        self.vae.eval()
        self.unet.eval()
        self.text_encoder.eval()
        self.aud_encoder.eval()

        if lora:
            # Set correct lora layers
            lora_attn_procs = {}
            for name in self.unet.attn_processors.keys():
                cross_attention_dim = None if name.endswith(
                    "attn1.processor") else self.unet.config.cross_attention_dim
                if name.startswith("mid_block"):
                    hidden_size = self.unet.config.block_out_channels[-1]
                elif name.startswith("up_blocks"):
                    block_id = int(name[len("up_blocks.")])
                    hidden_size = list(reversed(self.unet.config.block_out_channels))[block_id]
                elif name.startswith("down_blocks"):
                    block_id = int(name[len("down_blocks.")])
                    hidden_size = self.unet.config.block_out_channels[block_id]

                lora_attn_procs[name] = LoRAAttnProcessor(hidden_size=hidden_size,
                                                          cross_attention_dim=cross_attention_dim)

            self.unet.set_attn_processor(lora_attn_procs)
            self.lora_layers = AttnProcsLayers(self.unet.attn_processors)
            self.lora_layers.eval()
            lora_layers_learned_embeds = 'models/lora_layers_learned_embeds.bin'
            self.lora_layers.load_state_dict(torch.load(lora_layers_learned_embeds, map_location=device))
            self.unet.load_attn_procs(lora_layers_learned_embeds)

        self.embedder.eval()
        embedder_learned_embeds = 'models/embedder_learned_embeds.bin'
        self.embedder.load_state_dict(torch.load(embedder_learned_embeds, map_location=device))

        self.placeholder_token = '<*>'
        num_added_tokens = self.tokenizer.add_tokens(self.placeholder_token)
        if num_added_tokens == 0:
            raise ValueError(
                f"The tokenizer already contains the token {self.placeholder_token}. Please pass a different"
                " `placeholder_token` that is not already in the tokenizer."
            )
        self.placeholder_token_id = self.tokenizer.convert_tokens_to_ids(self.placeholder_token)
        # Resize the token embeddings as we are adding new special tokens to the tokenizer
        self.text_encoder.resize_token_embeddings(len(self.tokenizer))


def greet(audio):
    audio = audio[-1].astype(np.float32, order='C') / 32768.0
    weight_dtype = torch.float32
    prompt = 'a photo of <*>'

    audio_values = torch.unsqueeze(torch.tensor(audio), dim=0).to(device).to(dtype=weight_dtype)
    aud_features = model.aud_encoder.extract_features(audio_values)[1]
    audio_token = model.embedder(aud_features)

    token_embeds = model.text_encoder.get_input_embeddings().weight.data
    token_embeds[model.placeholder_token_id] = audio_token.clone()

    pipeline = StableDiffusionPipeline.from_pretrained(
        "CompVis/stable-diffusion-v1-4",
        tokenizer=model.tokenizer,
        text_encoder=model.text_encoder,
        vae=model.vae,
        unet=model.unet,
    ).to(device)
    image = pipeline(prompt, num_inference_steps=50, guidance_scale=7.5).images[0]
    return image

description = """
This is a demo of [AudioToken: Adaptation of Text-Conditioned Diffusion Models for Audio-to-Image Generation](https://pages.cs.huji.ac.il/adiyoss-lab/AudioToken/)
"""


if __name__ == "__main__":

    lora = True
    device = 'cpu'
    model = AudioTokenWrapper(lora, device)

    description = """<p>
    This is a demo of <a href='https://pages.cs.huji.ac.il/adiyoss-lab/AudioToken' target='_blank'>AudioToken: Adaptation of Text-Conditioned Diffusion Models for Audio-to-Image Generation</a><br>.
    Simply upload an audio to test your own case.<br>
    For more information, please see the original <a href='https://arxiv.org/abs/2305.13050' target='_blank'>paper</a> and <a href='https://github.com/guyyariv/AudioToken' target='_blank'>repo</a>.
    </p>"""

    examples = [
        ["assets/train.wav"],
        ["assets/dog barking.wav"],
        ["assets/airplane.wav"]
    ]

    demo = gr.Interface(
        fn=greet,
        inputs="audio",
        outputs="image",
        title='AudioToken',
        description=description,
        # examples=examples
    )
    demo.launch()