frankleeeee
commited on
Commit
•
68404e4
1
Parent(s):
3f75658
uploaded app
Browse files- app.py +248 -0
- configs/dit/inference/16x256x256.py +31 -0
- configs/dit/inference/1x256x256-class.py +31 -0
- configs/dit/inference/1x256x256.py +32 -0
- configs/dit/train/16x256x256.py +50 -0
- configs/dit/train/1x256x256.py +50 -0
- configs/latte/inference/16x256x256-class.py +30 -0
- configs/latte/inference/16x256x256.py +31 -0
- configs/latte/train/16x256x256.py +49 -0
- configs/opensora/inference/16x256x256.py +36 -0
- configs/opensora/inference/16x512x512.py +35 -0
- configs/opensora/inference/64x512x512.py +35 -0
- configs/opensora/train/16x256x256.py +53 -0
- configs/opensora/train/16x512x512.py +54 -0
- configs/opensora/train/360x512x512.py +55 -0
- configs/opensora/train/64x512x512-sp.py +54 -0
- configs/opensora/train/64x512x512.py +54 -0
- configs/pixart/inference/16x256x256.py +32 -0
- configs/pixart/inference/1x1024MS.py +34 -0
- configs/pixart/inference/1x256x256.py +33 -0
- configs/pixart/inference/1x512x512.py +33 -0
- configs/pixart/train/16x256x256.py +53 -0
- configs/pixart/train/1x512x512.py +54 -0
- configs/pixart/train/64x512x512.py +54 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
"""
|
3 |
+
This script runs a Gradio App for the Open-Sora model.
|
4 |
+
|
5 |
+
Usage:
|
6 |
+
python demo.py <config-path>
|
7 |
+
"""
|
8 |
+
|
9 |
+
import argparse
|
10 |
+
import importlib
|
11 |
+
import os
|
12 |
+
import subprocess
|
13 |
+
import sys
|
14 |
+
|
15 |
+
import spaces
|
16 |
+
import torch
|
17 |
+
|
18 |
+
import gradio as gr
|
19 |
+
|
20 |
+
MODEL_TYPES = ["v1-16x256x256", "v1-HQ-16x256x256", "v1-HQ-16x512x512"]
|
21 |
+
CONFIG_MAP = {
|
22 |
+
"v1-16x256x256": "configs/opensora/inference/16x256x256.py",
|
23 |
+
"v1-HQ-16x256x256": "configs/opensora/inference/16x256x256.py",
|
24 |
+
"v1-HQ-16x512x512": "configs/opensora/inference/16x512x512.py",
|
25 |
+
}
|
26 |
+
HF_STDIT_MAP = {
|
27 |
+
"v1-16x256x256": "hpcai-tech/OpenSora-STDiT-v1-16x256x256",
|
28 |
+
"v1-HQ-16x256x256": "hpcai-tech/OpenSora-STDiT-v1-HQ-16x256x256",
|
29 |
+
"v1-HQ-16x512x512": "hpcai-tech/OpenSora-STDiT-v1-HQ-16x512x512",
|
30 |
+
}
|
31 |
+
|
32 |
+
|
33 |
+
def install_dependencies(enable_optimization=False):
|
34 |
+
"""
|
35 |
+
Install the required dependencies for the demo if they are not already installed.
|
36 |
+
"""
|
37 |
+
|
38 |
+
def _is_package_available(name) -> bool:
|
39 |
+
try:
|
40 |
+
importlib.import_module(name)
|
41 |
+
return True
|
42 |
+
except (ImportError, ModuleNotFoundError):
|
43 |
+
return False
|
44 |
+
|
45 |
+
# flash attention is needed no matter optimization is enabled or not
|
46 |
+
# because Hugging Face transformers detects flash_attn is a dependency in STDiT
|
47 |
+
# thus, we need to install it no matter what
|
48 |
+
if not _is_package_available("flash_attn"):
|
49 |
+
subprocess.run(
|
50 |
+
f"{sys.executable} -m pip install flash-attn --no-build-isolation",
|
51 |
+
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
|
52 |
+
shell=True,
|
53 |
+
)
|
54 |
+
|
55 |
+
if enable_optimization:
|
56 |
+
# install apex for fused layernorm
|
57 |
+
if not _is_package_available("apex"):
|
58 |
+
subprocess.run(
|
59 |
+
f'{sys.executable} -m pip install -v --disable-pip-version-check --no-cache-dir --no-build-isolation --config-settings "--build-option=--cpp_ext" --config-settings "--build-option=--cuda_ext" git+https://github.com/NVIDIA/apex.git',
|
60 |
+
shell=True,
|
61 |
+
)
|
62 |
+
|
63 |
+
# install ninja
|
64 |
+
if not _is_package_available("ninja"):
|
65 |
+
subprocess.run(f"{sys.executable} -m pip install ninja", shell=True)
|
66 |
+
|
67 |
+
# install xformers
|
68 |
+
if not _is_package_available("xformers"):
|
69 |
+
subprocess.run(
|
70 |
+
f"{sys.executable} -m pip install -v -U git+https://github.com/facebookresearch/xformers.git@main#egg=xformers",
|
71 |
+
shell=True,
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
def read_config(config_path):
|
76 |
+
"""
|
77 |
+
Read the configuration file.
|
78 |
+
"""
|
79 |
+
from mmengine.config import Config
|
80 |
+
|
81 |
+
return Config.fromfile(config_path)
|
82 |
+
|
83 |
+
|
84 |
+
def build_models(model_type, config):
|
85 |
+
"""
|
86 |
+
Build the models for the given model type and configuration.
|
87 |
+
"""
|
88 |
+
# build vae
|
89 |
+
from opensora.registry import MODELS, build_module
|
90 |
+
|
91 |
+
vae = build_module(config.vae, MODELS).cuda()
|
92 |
+
|
93 |
+
# build text encoder
|
94 |
+
text_encoder = build_module(config.text_encoder, MODELS) # T5 must be fp32
|
95 |
+
text_encoder.t5.model = text_encoder.t5.model.cuda()
|
96 |
+
|
97 |
+
# build stdit
|
98 |
+
# we load model from HuggingFace directly so that we don't need to
|
99 |
+
# handle model download logic in HuggingFace Space
|
100 |
+
from transformers import AutoModel
|
101 |
+
|
102 |
+
stdit = AutoModel.from_pretrained(
|
103 |
+
HF_STDIT_MAP[model_type],
|
104 |
+
enable_flash_attn=False,
|
105 |
+
enable_layernorm_kernel=False,
|
106 |
+
trust_remote_code=True,
|
107 |
+
).cuda()
|
108 |
+
|
109 |
+
# build scheduler
|
110 |
+
from opensora.registry import SCHEDULERS
|
111 |
+
|
112 |
+
scheduler = build_module(config.scheduler, SCHEDULERS)
|
113 |
+
|
114 |
+
# hack for classifier-free guidance
|
115 |
+
text_encoder.y_embedder = stdit.y_embedder
|
116 |
+
|
117 |
+
# move modelst to device
|
118 |
+
vae = vae.to(torch.float16).eval()
|
119 |
+
text_encoder.t5.model = text_encoder.t5.model.eval() # t5 must be in fp32
|
120 |
+
stdit = stdit.to(torch.float16).eval()
|
121 |
+
return vae, text_encoder, stdit, scheduler
|
122 |
+
|
123 |
+
|
124 |
+
def get_latent_size(config, vae):
|
125 |
+
input_size = (config.num_frames, *config.image_size)
|
126 |
+
latent_size = vae.get_latent_size(input_size)
|
127 |
+
return latent_size
|
128 |
+
|
129 |
+
|
130 |
+
def parse_args():
|
131 |
+
parser = argparse.ArgumentParser()
|
132 |
+
parser.add_argument(
|
133 |
+
"--model-type",
|
134 |
+
default="v1-HQ-16x256x256",
|
135 |
+
choices=MODEL_TYPES,
|
136 |
+
help=f"The type of model to run for the Gradio App, can only be {MODEL_TYPES}",
|
137 |
+
)
|
138 |
+
parser.add_argument("--output", default="./outputs", type=str, help="The path to the output folder")
|
139 |
+
parser.add_argument("--port", default=None, type=int, help="The port to run the Gradio App on.")
|
140 |
+
parser.add_argument("--host", default=None, type=str, help="The host to run the Gradio App on.")
|
141 |
+
parser.add_argument("--share", action="store_true", help="Whether to share this gradio demo.")
|
142 |
+
parser.add_argument(
|
143 |
+
"--enable-optimization",
|
144 |
+
action="store_true",
|
145 |
+
help="Whether to enable optimization such as flash attention and fused layernorm",
|
146 |
+
)
|
147 |
+
return parser.parse_args()
|
148 |
+
|
149 |
+
|
150 |
+
# ============================
|
151 |
+
# Main Gradio Script
|
152 |
+
# ============================
|
153 |
+
# as `run_inference` needs to be wrapped by `spaces.GPU` and the input can only be the prompt text
|
154 |
+
# so we can't pass the models to `run_inference` as arguments.
|
155 |
+
# instead, we need to define them globally so that we can access these models inside `run_inference`
|
156 |
+
|
157 |
+
# read config
|
158 |
+
args = parse_args()
|
159 |
+
config = read_config(CONFIG_MAP[args.model_type])
|
160 |
+
|
161 |
+
# make outputs dir
|
162 |
+
os.makedirs(args.output, exist_ok=True)
|
163 |
+
|
164 |
+
# disable torch jit as it can cause failure in gradio SDK
|
165 |
+
# gradio sdk uses torch with cuda 11.3
|
166 |
+
torch.jit._state.disable()
|
167 |
+
|
168 |
+
# set up
|
169 |
+
install_dependencies(enable_optimization=args.enable_optimization)
|
170 |
+
|
171 |
+
# build model
|
172 |
+
vae, text_encoder, stdit, scheduler = build_models(args.model_type, config)
|
173 |
+
|
174 |
+
|
175 |
+
@spaces.GPU(duration=200)
|
176 |
+
def run_inference(prompt_text):
|
177 |
+
from opensora.datasets import save_sample
|
178 |
+
|
179 |
+
latent_size = get_latent_size(config, vae)
|
180 |
+
samples = scheduler.sample(
|
181 |
+
stdit,
|
182 |
+
text_encoder,
|
183 |
+
z_size=(vae.out_channels, *latent_size),
|
184 |
+
prompts=[prompt_text],
|
185 |
+
device="cuda",
|
186 |
+
)
|
187 |
+
|
188 |
+
samples = vae.decode(samples.to(torch.float16))
|
189 |
+
filename = f"{args.output}/sample"
|
190 |
+
saved_path = save_sample(samples[0], fps=config.fps, save_path=filename)
|
191 |
+
return saved_path
|
192 |
+
|
193 |
+
|
194 |
+
def main():
|
195 |
+
# create demo
|
196 |
+
with gr.Blocks() as demo:
|
197 |
+
with gr.Row():
|
198 |
+
with gr.Column():
|
199 |
+
gr.HTML(
|
200 |
+
"""
|
201 |
+
<div style='text-align: center;'>
|
202 |
+
<p align="center">
|
203 |
+
<img src="https://github.com/hpcaitech/Open-Sora/raw/main/assets/readme/icon.png" width="250"/>
|
204 |
+
</p>
|
205 |
+
<div style="display: flex; gap: 10px; justify-content: center;">
|
206 |
+
<a href="https://github.com/hpcaitech/Open-Sora/stargazers"><img src="https://img.shields.io/github/stars/hpcaitech/Open-Sora?style=social"></a>
|
207 |
+
<a href="https://hpcaitech.github.io/Open-Sora/"><img src="https://img.shields.io/badge/Gallery-View-orange?logo=&"></a>
|
208 |
+
<a href="https://discord.gg/kZakZzrSUT"><img src="https://img.shields.io/badge/Discord-join-blueviolet?logo=discord&"></a>
|
209 |
+
<a href="https://join.slack.com/t/colossalaiworkspace/shared_invite/zt-247ipg9fk-KRRYmUl~u2ll2637WRURVA"><img src="https://img.shields.io/badge/Slack-ColossalAI-blueviolet?logo=slack&"></a>
|
210 |
+
<a href="https://twitter.com/yangyou1991/status/1769411544083996787?s=61&t=jT0Dsx2d-MS5vS9rNM5e5g"><img src="https://img.shields.io/badge/Twitter-Discuss-blue?logo=twitter&"></a>
|
211 |
+
<a href="https://raw.githubusercontent.com/hpcaitech/public_assets/main/colossalai/img/WeChat.png"><img src="https://img.shields.io/badge/微信-小助手加群-green?logo=wechat&"></a>
|
212 |
+
<a href="https://hpc-ai.com/blog/open-sora-v1.0"><img src="https://img.shields.io/badge/Open_Sora-Blog-blue"></a>
|
213 |
+
</div>
|
214 |
+
<h1 style='margin-top: 5px;'>Open-Sora: Democratizing Efficient Video Production for All</h1>
|
215 |
+
</div>
|
216 |
+
"""
|
217 |
+
)
|
218 |
+
|
219 |
+
with gr.Row():
|
220 |
+
with gr.Column():
|
221 |
+
prompt_text = gr.Textbox(show_label=False, placeholder="Describe your video here", lines=4)
|
222 |
+
submit_button = gr.Button("Generate video")
|
223 |
+
|
224 |
+
with gr.Column():
|
225 |
+
output_video = gr.Video()
|
226 |
+
|
227 |
+
submit_button.click(fn=run_inference, inputs=[prompt_text], outputs=output_video)
|
228 |
+
|
229 |
+
gr.Examples(
|
230 |
+
examples=[
|
231 |
+
[
|
232 |
+
"The video captures the majestic beauty of a waterfall cascading down a cliff into a serene lake. The waterfall, with its powerful flow, is the central focus of the video. The surrounding landscape is lush and green, with trees and foliage adding to the natural beauty of the scene. The camera angle provides a bird's eye view of the waterfall, allowing viewers to appreciate the full height and grandeur of the waterfall. The video is a stunning representation of nature's power and beauty.",
|
233 |
+
],
|
234 |
+
],
|
235 |
+
fn=run_inference,
|
236 |
+
inputs=[
|
237 |
+
prompt_text,
|
238 |
+
],
|
239 |
+
outputs=[output_video],
|
240 |
+
cache_examples=True,
|
241 |
+
)
|
242 |
+
|
243 |
+
# launch
|
244 |
+
demo.launch(server_port=args.port, server_name=args.host, share=args.share)
|
245 |
+
|
246 |
+
|
247 |
+
if __name__ == "__main__":
|
248 |
+
main()
|
configs/dit/inference/16x256x256.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
fps = 8
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="DiT-XL/2",
|
8 |
+
condition="text",
|
9 |
+
from_pretrained="PRETRAINED_MODEL",
|
10 |
+
)
|
11 |
+
vae = dict(
|
12 |
+
type="VideoAutoencoderKL",
|
13 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
14 |
+
)
|
15 |
+
text_encoder = dict(
|
16 |
+
type="clip",
|
17 |
+
from_pretrained="openai/clip-vit-base-patch32",
|
18 |
+
model_max_length=77,
|
19 |
+
)
|
20 |
+
scheduler = dict(
|
21 |
+
type="dpm-solver",
|
22 |
+
num_sampling_steps=20,
|
23 |
+
cfg_scale=4.0,
|
24 |
+
)
|
25 |
+
dtype = "fp16"
|
26 |
+
|
27 |
+
# Others
|
28 |
+
batch_size = 2
|
29 |
+
seed = 42
|
30 |
+
prompt_path = "./assets/texts/ucf101_labels.txt"
|
31 |
+
save_dir = "./outputs/samples/"
|
configs/dit/inference/1x256x256-class.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
fps = 1
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="DiT-XL/2",
|
8 |
+
no_temporal_pos_emb=True,
|
9 |
+
condition="label_1000",
|
10 |
+
from_pretrained="DiT-XL-2-256x256.pt",
|
11 |
+
)
|
12 |
+
vae = dict(
|
13 |
+
type="VideoAutoencoderKL",
|
14 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
15 |
+
)
|
16 |
+
text_encoder = dict(
|
17 |
+
type="classes",
|
18 |
+
num_classes=1000,
|
19 |
+
)
|
20 |
+
scheduler = dict(
|
21 |
+
type="dpm-solver",
|
22 |
+
num_sampling_steps=20,
|
23 |
+
cfg_scale=4.0,
|
24 |
+
)
|
25 |
+
dtype = "fp16"
|
26 |
+
|
27 |
+
# Others
|
28 |
+
batch_size = 2
|
29 |
+
seed = 42
|
30 |
+
prompt_path = "./assets/texts/imagenet_id.txt"
|
31 |
+
save_dir = "./outputs/samples/"
|
configs/dit/inference/1x256x256.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
fps = 1
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="DiT-XL/2",
|
8 |
+
no_temporal_pos_emb=True,
|
9 |
+
condition="text",
|
10 |
+
from_pretrained="PRETRAINED_MODEL",
|
11 |
+
)
|
12 |
+
vae = dict(
|
13 |
+
type="VideoAutoencoderKL",
|
14 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
15 |
+
)
|
16 |
+
text_encoder = dict(
|
17 |
+
type="clip",
|
18 |
+
from_pretrained="openai/clip-vit-base-patch32",
|
19 |
+
model_max_length=77,
|
20 |
+
)
|
21 |
+
scheduler = dict(
|
22 |
+
type="dpm-solver",
|
23 |
+
num_sampling_steps=20,
|
24 |
+
cfg_scale=4.0,
|
25 |
+
)
|
26 |
+
dtype = "fp16"
|
27 |
+
|
28 |
+
# Others
|
29 |
+
batch_size = 2
|
30 |
+
seed = 42
|
31 |
+
prompt_path = "./assets/texts/imagenet_labels.txt"
|
32 |
+
save_dir = "./outputs/samples/"
|
configs/dit/train/16x256x256.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
frame_interval = 3
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define dataset
|
6 |
+
root = None
|
7 |
+
data_path = "CSV_PATH"
|
8 |
+
use_image_transform = False
|
9 |
+
num_workers = 4
|
10 |
+
|
11 |
+
# Define acceleration
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = False
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="DiT-XL/2",
|
20 |
+
from_pretrained="DiT-XL-2-256x256.pt",
|
21 |
+
enable_flashattn=True,
|
22 |
+
enable_layernorm_kernel=True,
|
23 |
+
)
|
24 |
+
vae = dict(
|
25 |
+
type="VideoAutoencoderKL",
|
26 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
27 |
+
)
|
28 |
+
text_encoder = dict(
|
29 |
+
type="clip",
|
30 |
+
from_pretrained="openai/clip-vit-base-patch32",
|
31 |
+
model_max_length=77,
|
32 |
+
)
|
33 |
+
scheduler = dict(
|
34 |
+
type="iddpm",
|
35 |
+
timestep_respacing="",
|
36 |
+
)
|
37 |
+
|
38 |
+
# Others
|
39 |
+
seed = 42
|
40 |
+
outputs = "outputs"
|
41 |
+
wandb = False
|
42 |
+
|
43 |
+
epochs = 1000
|
44 |
+
log_every = 10
|
45 |
+
ckpt_every = 1000
|
46 |
+
load = None
|
47 |
+
|
48 |
+
batch_size = 8
|
49 |
+
lr = 2e-5
|
50 |
+
grad_clip = 1.0
|
configs/dit/train/1x256x256.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
frame_interval = 1
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define dataset
|
6 |
+
root = None
|
7 |
+
data_path = "CSV_PATH"
|
8 |
+
use_image_transform = True
|
9 |
+
num_workers = 4
|
10 |
+
|
11 |
+
# Define acceleration
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = False
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="DiT-XL/2",
|
20 |
+
no_temporal_pos_emb=True,
|
21 |
+
enable_flashattn=True,
|
22 |
+
enable_layernorm_kernel=True,
|
23 |
+
)
|
24 |
+
vae = dict(
|
25 |
+
type="VideoAutoencoderKL",
|
26 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
27 |
+
)
|
28 |
+
text_encoder = dict(
|
29 |
+
type="clip",
|
30 |
+
from_pretrained="openai/clip-vit-base-patch32",
|
31 |
+
model_max_length=77,
|
32 |
+
)
|
33 |
+
scheduler = dict(
|
34 |
+
type="iddpm",
|
35 |
+
timestep_respacing="",
|
36 |
+
)
|
37 |
+
|
38 |
+
# Others
|
39 |
+
seed = 42
|
40 |
+
outputs = "outputs"
|
41 |
+
wandb = False
|
42 |
+
|
43 |
+
epochs = 1000
|
44 |
+
log_every = 10
|
45 |
+
ckpt_every = 1000
|
46 |
+
load = None
|
47 |
+
|
48 |
+
batch_size = 128
|
49 |
+
lr = 1e-4 # according to DiT repo
|
50 |
+
grad_clip = 1.0
|
configs/latte/inference/16x256x256-class.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
fps = 8
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="Latte-XL/2",
|
8 |
+
condition="label_101",
|
9 |
+
from_pretrained="Latte-XL-2-256x256-ucf101.pt",
|
10 |
+
)
|
11 |
+
vae = dict(
|
12 |
+
type="VideoAutoencoderKL",
|
13 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
14 |
+
)
|
15 |
+
text_encoder = dict(
|
16 |
+
type="classes",
|
17 |
+
num_classes=101,
|
18 |
+
)
|
19 |
+
scheduler = dict(
|
20 |
+
type="dpm-solver",
|
21 |
+
num_sampling_steps=20,
|
22 |
+
cfg_scale=4.0,
|
23 |
+
)
|
24 |
+
dtype = "fp16"
|
25 |
+
|
26 |
+
# Others
|
27 |
+
batch_size = 2
|
28 |
+
seed = 42
|
29 |
+
prompt_path = "./assets/texts/ucf101_id.txt"
|
30 |
+
save_dir = "./outputs/samples/"
|
configs/latte/inference/16x256x256.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
fps = 8
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="Latte-XL/2",
|
8 |
+
condition="text",
|
9 |
+
from_pretrained="PRETRAINED_MODEL",
|
10 |
+
)
|
11 |
+
vae = dict(
|
12 |
+
type="VideoAutoencoderKL",
|
13 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
14 |
+
)
|
15 |
+
text_encoder = dict(
|
16 |
+
type="clip",
|
17 |
+
from_pretrained="openai/clip-vit-base-patch32",
|
18 |
+
model_max_length=77,
|
19 |
+
)
|
20 |
+
scheduler = dict(
|
21 |
+
type="dpm-solver",
|
22 |
+
num_sampling_steps=20,
|
23 |
+
cfg_scale=4.0,
|
24 |
+
)
|
25 |
+
dtype = "fp16"
|
26 |
+
|
27 |
+
# Others
|
28 |
+
batch_size = 2
|
29 |
+
seed = 42
|
30 |
+
prompt_path = "./assets/texts/ucf101_labels.txt"
|
31 |
+
save_dir = "./outputs/samples/"
|
configs/latte/train/16x256x256.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
frame_interval = 3
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define dataset
|
6 |
+
root = None
|
7 |
+
data_path = "CSV_PATH"
|
8 |
+
use_image_transform = False
|
9 |
+
num_workers = 4
|
10 |
+
|
11 |
+
# Define acceleration
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="Latte-XL/2",
|
20 |
+
enable_flashattn=True,
|
21 |
+
enable_layernorm_kernel=True,
|
22 |
+
)
|
23 |
+
vae = dict(
|
24 |
+
type="VideoAutoencoderKL",
|
25 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
26 |
+
)
|
27 |
+
text_encoder = dict(
|
28 |
+
type="clip",
|
29 |
+
from_pretrained="openai/clip-vit-base-patch32",
|
30 |
+
model_max_length=77,
|
31 |
+
)
|
32 |
+
scheduler = dict(
|
33 |
+
type="iddpm",
|
34 |
+
timestep_respacing="",
|
35 |
+
)
|
36 |
+
|
37 |
+
# Others
|
38 |
+
seed = 42
|
39 |
+
outputs = "outputs"
|
40 |
+
wandb = False
|
41 |
+
|
42 |
+
epochs = 1000
|
43 |
+
log_every = 10
|
44 |
+
ckpt_every = 1000
|
45 |
+
load = None
|
46 |
+
|
47 |
+
batch_size = 8
|
48 |
+
lr = 2e-5
|
49 |
+
grad_clip = 1.0
|
configs/opensora/inference/16x256x256.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
fps = 24 // 3
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="STDiT-XL/2",
|
8 |
+
space_scale=0.5,
|
9 |
+
time_scale=1.0,
|
10 |
+
enable_flashattn=True,
|
11 |
+
enable_layernorm_kernel=True,
|
12 |
+
from_pretrained="PRETRAINED_MODEL",
|
13 |
+
)
|
14 |
+
vae = dict(
|
15 |
+
type="VideoAutoencoderKL",
|
16 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
17 |
+
micro_batch_size=4,
|
18 |
+
)
|
19 |
+
text_encoder = dict(
|
20 |
+
type="t5",
|
21 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
22 |
+
model_max_length=120,
|
23 |
+
)
|
24 |
+
scheduler = dict(
|
25 |
+
type="iddpm",
|
26 |
+
num_sampling_steps=100,
|
27 |
+
cfg_scale=7.0,
|
28 |
+
cfg_channel=3, # or None
|
29 |
+
)
|
30 |
+
dtype = "fp16"
|
31 |
+
|
32 |
+
# Others
|
33 |
+
batch_size = 1
|
34 |
+
seed = 42
|
35 |
+
prompt_path = "./assets/texts/t2v_samples.txt"
|
36 |
+
save_dir = "./outputs/samples/"
|
configs/opensora/inference/16x512x512.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
fps = 24 // 3
|
3 |
+
image_size = (512, 512)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="STDiT-XL/2",
|
8 |
+
space_scale=1.0,
|
9 |
+
time_scale=1.0,
|
10 |
+
enable_flashattn=True,
|
11 |
+
enable_layernorm_kernel=True,
|
12 |
+
from_pretrained="PRETRAINED_MODEL"
|
13 |
+
)
|
14 |
+
vae = dict(
|
15 |
+
type="VideoAutoencoderKL",
|
16 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
17 |
+
micro_batch_size=2,
|
18 |
+
)
|
19 |
+
text_encoder = dict(
|
20 |
+
type="t5",
|
21 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
22 |
+
model_max_length=120,
|
23 |
+
)
|
24 |
+
scheduler = dict(
|
25 |
+
type="iddpm",
|
26 |
+
num_sampling_steps=100,
|
27 |
+
cfg_scale=7.0,
|
28 |
+
)
|
29 |
+
dtype = "fp16"
|
30 |
+
|
31 |
+
# Others
|
32 |
+
batch_size = 2
|
33 |
+
seed = 42
|
34 |
+
prompt_path = "./assets/texts/t2v_samples.txt"
|
35 |
+
save_dir = "./outputs/samples/"
|
configs/opensora/inference/64x512x512.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 64
|
2 |
+
fps = 24 // 2
|
3 |
+
image_size = (512, 512)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="STDiT-XL/2",
|
8 |
+
space_scale=1.0,
|
9 |
+
time_scale=2 / 3,
|
10 |
+
enable_flashattn=True,
|
11 |
+
enable_layernorm_kernel=True,
|
12 |
+
from_pretrained="PRETRAINED_MODEL",
|
13 |
+
)
|
14 |
+
vae = dict(
|
15 |
+
type="VideoAutoencoderKL",
|
16 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
17 |
+
micro_batch_size=128,
|
18 |
+
)
|
19 |
+
text_encoder = dict(
|
20 |
+
type="t5",
|
21 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
22 |
+
model_max_length=120,
|
23 |
+
)
|
24 |
+
scheduler = dict(
|
25 |
+
type="iddpm",
|
26 |
+
num_sampling_steps=100,
|
27 |
+
cfg_scale=7.0,
|
28 |
+
)
|
29 |
+
dtype = "fp16"
|
30 |
+
|
31 |
+
# Others
|
32 |
+
batch_size = 1
|
33 |
+
seed = 42
|
34 |
+
prompt_path = "./assets/texts/t2v_samples.txt"
|
35 |
+
save_dir = "./outputs/samples/"
|
configs/opensora/train/16x256x256.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
frame_interval = 3
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define dataset
|
6 |
+
root = None
|
7 |
+
data_path = "CSV_PATH"
|
8 |
+
use_image_transform = False
|
9 |
+
num_workers = 4
|
10 |
+
|
11 |
+
# Define acceleration
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="STDiT-XL/2",
|
20 |
+
space_scale=0.5,
|
21 |
+
time_scale=1.0,
|
22 |
+
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
enable_flashattn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
)
|
26 |
+
vae = dict(
|
27 |
+
type="VideoAutoencoderKL",
|
28 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
29 |
+
)
|
30 |
+
text_encoder = dict(
|
31 |
+
type="t5",
|
32 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
33 |
+
model_max_length=120,
|
34 |
+
shardformer=True,
|
35 |
+
)
|
36 |
+
scheduler = dict(
|
37 |
+
type="iddpm",
|
38 |
+
timestep_respacing="",
|
39 |
+
)
|
40 |
+
|
41 |
+
# Others
|
42 |
+
seed = 42
|
43 |
+
outputs = "outputs"
|
44 |
+
wandb = False
|
45 |
+
|
46 |
+
epochs = 1000
|
47 |
+
log_every = 10
|
48 |
+
ckpt_every = 1000
|
49 |
+
load = None
|
50 |
+
|
51 |
+
batch_size = 8
|
52 |
+
lr = 2e-5
|
53 |
+
grad_clip = 1.0
|
configs/opensora/train/16x512x512.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
frame_interval = 3
|
3 |
+
image_size = (512, 512)
|
4 |
+
|
5 |
+
# Define dataset
|
6 |
+
root = None
|
7 |
+
data_path = "CSV_PATH"
|
8 |
+
use_image_transform = False
|
9 |
+
num_workers = 4
|
10 |
+
|
11 |
+
# Define acceleration
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = False
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="STDiT-XL/2",
|
20 |
+
space_scale=1.0,
|
21 |
+
time_scale=1.0,
|
22 |
+
from_pretrained=None,
|
23 |
+
enable_flashattn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
)
|
26 |
+
vae = dict(
|
27 |
+
type="VideoAutoencoderKL",
|
28 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
29 |
+
micro_batch_size=128,
|
30 |
+
)
|
31 |
+
text_encoder = dict(
|
32 |
+
type="t5",
|
33 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
34 |
+
model_max_length=120,
|
35 |
+
shardformer=True,
|
36 |
+
)
|
37 |
+
scheduler = dict(
|
38 |
+
type="iddpm",
|
39 |
+
timestep_respacing="",
|
40 |
+
)
|
41 |
+
|
42 |
+
# Others
|
43 |
+
seed = 42
|
44 |
+
outputs = "outputs"
|
45 |
+
wandb = False
|
46 |
+
|
47 |
+
epochs = 1000
|
48 |
+
log_every = 10
|
49 |
+
ckpt_every = 500
|
50 |
+
load = None
|
51 |
+
|
52 |
+
batch_size = 8
|
53 |
+
lr = 2e-5
|
54 |
+
grad_clip = 1.0
|
configs/opensora/train/360x512x512.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 360
|
2 |
+
frame_interval = 1
|
3 |
+
image_size = (512, 512)
|
4 |
+
|
5 |
+
# Define dataset
|
6 |
+
root = None
|
7 |
+
data_path = "CSV_PATH"
|
8 |
+
use_image_transform = False
|
9 |
+
num_workers = 4
|
10 |
+
|
11 |
+
# Define acceleration
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2-seq"
|
15 |
+
sp_size = 2
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="STDiT-XL/2",
|
20 |
+
space_scale=1.0,
|
21 |
+
time_scale=2 / 3,
|
22 |
+
from_pretrained=None,
|
23 |
+
enable_flashattn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
enable_sequence_parallelism=True, # enable sq here
|
26 |
+
)
|
27 |
+
vae = dict(
|
28 |
+
type="VideoAutoencoderKL",
|
29 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
30 |
+
micro_batch_size=128,
|
31 |
+
)
|
32 |
+
text_encoder = dict(
|
33 |
+
type="t5",
|
34 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
35 |
+
model_max_length=120,
|
36 |
+
shardformer=True,
|
37 |
+
)
|
38 |
+
scheduler = dict(
|
39 |
+
type="iddpm",
|
40 |
+
timestep_respacing="",
|
41 |
+
)
|
42 |
+
|
43 |
+
# Others
|
44 |
+
seed = 42
|
45 |
+
outputs = "outputs"
|
46 |
+
wandb = False
|
47 |
+
|
48 |
+
epochs = 1000
|
49 |
+
log_every = 10
|
50 |
+
ckpt_every = 250
|
51 |
+
load = None
|
52 |
+
|
53 |
+
batch_size = 1
|
54 |
+
lr = 2e-5
|
55 |
+
grad_clip = 1.0
|
configs/opensora/train/64x512x512-sp.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 64
|
2 |
+
frame_interval = 2
|
3 |
+
image_size = (512, 512)
|
4 |
+
|
5 |
+
# Define dataset
|
6 |
+
root = None
|
7 |
+
data_path = "CSV_PATH"
|
8 |
+
use_image_transform = False
|
9 |
+
num_workers = 4
|
10 |
+
|
11 |
+
# Define acceleration
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2-seq"
|
15 |
+
sp_size = 2
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="STDiT-XL/2",
|
20 |
+
space_scale=1.0,
|
21 |
+
time_scale=2 / 3,
|
22 |
+
from_pretrained=None,
|
23 |
+
enable_flashattn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
enable_sequence_parallelism=True, # enable sq here
|
26 |
+
)
|
27 |
+
vae = dict(
|
28 |
+
type="VideoAutoencoderKL",
|
29 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
30 |
+
)
|
31 |
+
text_encoder = dict(
|
32 |
+
type="t5",
|
33 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
34 |
+
model_max_length=120,
|
35 |
+
shardformer=True,
|
36 |
+
)
|
37 |
+
scheduler = dict(
|
38 |
+
type="iddpm",
|
39 |
+
timestep_respacing="",
|
40 |
+
)
|
41 |
+
|
42 |
+
# Others
|
43 |
+
seed = 42
|
44 |
+
outputs = "outputs"
|
45 |
+
wandb = False
|
46 |
+
|
47 |
+
epochs = 1000
|
48 |
+
log_every = 10
|
49 |
+
ckpt_every = 1000
|
50 |
+
load = None
|
51 |
+
|
52 |
+
batch_size = 1
|
53 |
+
lr = 2e-5
|
54 |
+
grad_clip = 1.0
|
configs/opensora/train/64x512x512.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 64
|
2 |
+
frame_interval = 2
|
3 |
+
image_size = (512, 512)
|
4 |
+
|
5 |
+
# Define dataset
|
6 |
+
root = None
|
7 |
+
data_path = "CSV_PATH"
|
8 |
+
use_image_transform = False
|
9 |
+
num_workers = 4
|
10 |
+
|
11 |
+
# Define acceleration
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="STDiT-XL/2",
|
20 |
+
space_scale=1.0,
|
21 |
+
time_scale=2 / 3,
|
22 |
+
from_pretrained=None,
|
23 |
+
enable_flashattn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
)
|
26 |
+
vae = dict(
|
27 |
+
type="VideoAutoencoderKL",
|
28 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
29 |
+
micro_batch_size=64,
|
30 |
+
)
|
31 |
+
text_encoder = dict(
|
32 |
+
type="t5",
|
33 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
34 |
+
model_max_length=120,
|
35 |
+
shardformer=True,
|
36 |
+
)
|
37 |
+
scheduler = dict(
|
38 |
+
type="iddpm",
|
39 |
+
timestep_respacing="",
|
40 |
+
)
|
41 |
+
|
42 |
+
# Others
|
43 |
+
seed = 42
|
44 |
+
outputs = "outputs"
|
45 |
+
wandb = False
|
46 |
+
|
47 |
+
epochs = 1000
|
48 |
+
log_every = 10
|
49 |
+
ckpt_every = 250
|
50 |
+
load = None
|
51 |
+
|
52 |
+
batch_size = 4
|
53 |
+
lr = 2e-5
|
54 |
+
grad_clip = 1.0
|
configs/pixart/inference/16x256x256.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
fps = 8
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="PixArt-XL/2",
|
8 |
+
space_scale=0.5,
|
9 |
+
time_scale=1.0,
|
10 |
+
from_pretrained="outputs/098-F16S3-PixArt-XL-2/epoch7-global_step30000/model_ckpt.pt",
|
11 |
+
)
|
12 |
+
vae = dict(
|
13 |
+
type="VideoAutoencoderKL",
|
14 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
15 |
+
)
|
16 |
+
text_encoder = dict(
|
17 |
+
type="t5",
|
18 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
19 |
+
model_max_length=120,
|
20 |
+
)
|
21 |
+
scheduler = dict(
|
22 |
+
type="dpm-solver",
|
23 |
+
num_sampling_steps=20,
|
24 |
+
cfg_scale=7.0,
|
25 |
+
)
|
26 |
+
dtype = "fp16"
|
27 |
+
|
28 |
+
# Others
|
29 |
+
batch_size = 2
|
30 |
+
seed = 42
|
31 |
+
prompt_path = "./assets/texts/t2v_samples.txt"
|
32 |
+
save_dir = "./outputs/samples/"
|
configs/pixart/inference/1x1024MS.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
fps = 1
|
3 |
+
image_size = (1920, 512)
|
4 |
+
multi_resolution = True
|
5 |
+
|
6 |
+
# Define model
|
7 |
+
model = dict(
|
8 |
+
type="PixArtMS-XL/2",
|
9 |
+
space_scale=2.0,
|
10 |
+
time_scale=1.0,
|
11 |
+
no_temporal_pos_emb=True,
|
12 |
+
from_pretrained="PixArt-XL-2-1024-MS.pth",
|
13 |
+
)
|
14 |
+
vae = dict(
|
15 |
+
type="VideoAutoencoderKL",
|
16 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
17 |
+
)
|
18 |
+
text_encoder = dict(
|
19 |
+
type="t5",
|
20 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
21 |
+
model_max_length=120,
|
22 |
+
)
|
23 |
+
scheduler = dict(
|
24 |
+
type="dpm-solver",
|
25 |
+
num_sampling_steps=20,
|
26 |
+
cfg_scale=7.0,
|
27 |
+
)
|
28 |
+
dtype = "fp16"
|
29 |
+
|
30 |
+
# Others
|
31 |
+
batch_size = 2
|
32 |
+
seed = 42
|
33 |
+
prompt_path = "./assets/texts/t2i_samples.txt"
|
34 |
+
save_dir = "./outputs/samples/"
|
configs/pixart/inference/1x256x256.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
fps = 1
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="PixArt-XL/2",
|
8 |
+
space_scale=1.0,
|
9 |
+
time_scale=1.0,
|
10 |
+
no_temporal_pos_emb=True,
|
11 |
+
from_pretrained="PixArt-XL-2-256x256.pth",
|
12 |
+
)
|
13 |
+
vae = dict(
|
14 |
+
type="VideoAutoencoderKL",
|
15 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
16 |
+
)
|
17 |
+
text_encoder = dict(
|
18 |
+
type="t5",
|
19 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
20 |
+
model_max_length=120,
|
21 |
+
)
|
22 |
+
scheduler = dict(
|
23 |
+
type="dpm-solver",
|
24 |
+
num_sampling_steps=20,
|
25 |
+
cfg_scale=7.0,
|
26 |
+
)
|
27 |
+
dtype = "fp16"
|
28 |
+
|
29 |
+
# Others
|
30 |
+
batch_size = 2
|
31 |
+
seed = 42
|
32 |
+
prompt_path = "./assets/texts/t2i_samples.txt"
|
33 |
+
save_dir = "./outputs/samples/"
|
configs/pixart/inference/1x512x512.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
fps = 1
|
3 |
+
image_size = (512, 512)
|
4 |
+
|
5 |
+
# Define model
|
6 |
+
model = dict(
|
7 |
+
type="PixArt-XL/2",
|
8 |
+
space_scale=1.0,
|
9 |
+
time_scale=1.0,
|
10 |
+
no_temporal_pos_emb=True,
|
11 |
+
from_pretrained="PixArt-XL-2-512x512.pth",
|
12 |
+
)
|
13 |
+
vae = dict(
|
14 |
+
type="VideoAutoencoderKL",
|
15 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
16 |
+
)
|
17 |
+
text_encoder = dict(
|
18 |
+
type="t5",
|
19 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
20 |
+
model_max_length=120,
|
21 |
+
)
|
22 |
+
scheduler = dict(
|
23 |
+
type="dpm-solver",
|
24 |
+
num_sampling_steps=20,
|
25 |
+
cfg_scale=7.0,
|
26 |
+
)
|
27 |
+
dtype = "fp16"
|
28 |
+
|
29 |
+
# Others
|
30 |
+
batch_size = 2
|
31 |
+
seed = 42
|
32 |
+
prompt_path = "./assets/texts/t2i_samples.txt"
|
33 |
+
save_dir = "./outputs/samples/"
|
configs/pixart/train/16x256x256.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 16
|
2 |
+
frame_interval = 3
|
3 |
+
image_size = (256, 256)
|
4 |
+
|
5 |
+
# Define dataset
|
6 |
+
root = None
|
7 |
+
data_path = "CSV_PATH"
|
8 |
+
use_image_transform = False
|
9 |
+
num_workers = 4
|
10 |
+
|
11 |
+
# Define acceleration
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = False
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="PixArt-XL/2",
|
20 |
+
space_scale=0.5,
|
21 |
+
time_scale=1.0,
|
22 |
+
from_pretrained="PixArt-XL-2-512x512.pth",
|
23 |
+
enable_flashattn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
)
|
26 |
+
vae = dict(
|
27 |
+
type="VideoAutoencoderKL",
|
28 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
29 |
+
)
|
30 |
+
text_encoder = dict(
|
31 |
+
type="t5",
|
32 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
33 |
+
model_max_length=120,
|
34 |
+
shardformer=True,
|
35 |
+
)
|
36 |
+
scheduler = dict(
|
37 |
+
type="iddpm",
|
38 |
+
timestep_respacing="",
|
39 |
+
)
|
40 |
+
|
41 |
+
# Others
|
42 |
+
seed = 42
|
43 |
+
outputs = "outputs"
|
44 |
+
wandb = False
|
45 |
+
|
46 |
+
epochs = 1000
|
47 |
+
log_every = 10
|
48 |
+
ckpt_every = 1000
|
49 |
+
load = None
|
50 |
+
|
51 |
+
batch_size = 8
|
52 |
+
lr = 2e-5
|
53 |
+
grad_clip = 1.0
|
configs/pixart/train/1x512x512.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 1
|
2 |
+
frame_interval = 1
|
3 |
+
image_size = (512, 512)
|
4 |
+
|
5 |
+
# Define dataset
|
6 |
+
root = None
|
7 |
+
data_path = "CSV_PATH"
|
8 |
+
use_image_transform = True
|
9 |
+
num_workers = 4
|
10 |
+
|
11 |
+
# Define acceleration
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="PixArt-XL/2",
|
20 |
+
space_scale=1.0,
|
21 |
+
time_scale=1.0,
|
22 |
+
no_temporal_pos_emb=True,
|
23 |
+
from_pretrained="PixArt-XL-2-512x512.pth",
|
24 |
+
enable_flashattn=True,
|
25 |
+
enable_layernorm_kernel=True,
|
26 |
+
)
|
27 |
+
vae = dict(
|
28 |
+
type="VideoAutoencoderKL",
|
29 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
30 |
+
)
|
31 |
+
text_encoder = dict(
|
32 |
+
type="t5",
|
33 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
34 |
+
model_max_length=120,
|
35 |
+
shardformer=True,
|
36 |
+
)
|
37 |
+
scheduler = dict(
|
38 |
+
type="iddpm",
|
39 |
+
timestep_respacing="",
|
40 |
+
)
|
41 |
+
|
42 |
+
# Others
|
43 |
+
seed = 42
|
44 |
+
outputs = "outputs"
|
45 |
+
wandb = False
|
46 |
+
|
47 |
+
epochs = 1000
|
48 |
+
log_every = 10
|
49 |
+
ckpt_every = 1000
|
50 |
+
load = None
|
51 |
+
|
52 |
+
batch_size = 32
|
53 |
+
lr = 2e-5
|
54 |
+
grad_clip = 1.0
|
configs/pixart/train/64x512x512.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
num_frames = 64
|
2 |
+
frame_interval = 2
|
3 |
+
image_size = (512, 512)
|
4 |
+
|
5 |
+
# Define dataset
|
6 |
+
root = None
|
7 |
+
data_path = "CSV_PATH"
|
8 |
+
use_image_transform = False
|
9 |
+
num_workers = 4
|
10 |
+
|
11 |
+
# Define acceleration
|
12 |
+
dtype = "bf16"
|
13 |
+
grad_checkpoint = True
|
14 |
+
plugin = "zero2"
|
15 |
+
sp_size = 1
|
16 |
+
|
17 |
+
# Define model
|
18 |
+
model = dict(
|
19 |
+
type="PixArt-XL/2",
|
20 |
+
space_scale=1.0,
|
21 |
+
time_scale=2 / 3,
|
22 |
+
from_pretrained=None,
|
23 |
+
enable_flashattn=True,
|
24 |
+
enable_layernorm_kernel=True,
|
25 |
+
)
|
26 |
+
vae = dict(
|
27 |
+
type="VideoAutoencoderKL",
|
28 |
+
from_pretrained="stabilityai/sd-vae-ft-ema",
|
29 |
+
micro_batch_size=128,
|
30 |
+
)
|
31 |
+
text_encoder = dict(
|
32 |
+
type="t5",
|
33 |
+
from_pretrained="DeepFloyd/t5-v1_1-xxl",
|
34 |
+
model_max_length=120,
|
35 |
+
shardformer=True,
|
36 |
+
)
|
37 |
+
scheduler = dict(
|
38 |
+
type="iddpm",
|
39 |
+
timestep_respacing="",
|
40 |
+
)
|
41 |
+
|
42 |
+
# Others
|
43 |
+
seed = 42
|
44 |
+
outputs = "outputs"
|
45 |
+
wandb = False
|
46 |
+
|
47 |
+
epochs = 1000
|
48 |
+
log_every = 10
|
49 |
+
ckpt_every = 250
|
50 |
+
load = None
|
51 |
+
|
52 |
+
batch_size = 4
|
53 |
+
lr = 2e-5
|
54 |
+
grad_clip = 1.0
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
xformers
|
2 |
+
git+https://github.com/hpcaitech/Open-Sora.git#egg=opensora
|
3 |
+
transformers
|