Spaces:
Running
on
L40S
Running
on
L40S
File size: 33,411 Bytes
31f2f28 4b12aec 31f2f28 4b12aec 31f2f28 4b12aec 31f2f28 320051c 31f2f28 18ce27f 4b12aec 3e5e0c1 31f2f28 320051c 31f2f28 320051c 31f2f28 4b12aec 31f2f28 18ce27f 31f2f28 18ce27f 320051c 18ce27f 320051c 31f2f28 1164b79 18ce27f 1164b79 3e5e0c1 31f2f28 603c46e 31f2f28 18ce27f 603c46e 31f2f28 18ce27f 603c46e 18ce27f 603c46e 18ce27f 603c46e 18ce27f 603c46e 18ce27f 603c46e 18ce27f 603c46e 18ce27f 603c46e 18ce27f 31f2f28 18ce27f 31f2f28 1164b79 31f2f28 1164b79 31f2f28 18ce27f 31f2f28 4b12aec 31f2f28 603c46e 1164b79 31f2f28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 |
import spaces
import os
# os.environ["XDG_RUNTIME_DIR"] = "/content"
# os.system("Xvfb :99 -ac &")
# os.environ["DISPLAY"] = ":99"
# os.environ["PYOPENGL_PLATFORM"] = "egl"
# os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"
import gradio as gr
import gc
import soundfile as sf
import shutil
import argparse
from moviepy.tools import verbose_print
from omegaconf import OmegaConf
import random
import numpy as np
import json
import librosa
import emage.mertic
from datetime import datetime
from decord import VideoReader
from PIL import Image
import copy
import importlib
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import AdamW
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel as DDP
from tqdm import tqdm
import smplx
from moviepy.editor import VideoFileClip, AudioFileClip, ImageSequenceClip
import igraph
# import emage
import utils.rotation_conversions as rc
from utils.video_io import save_videos_from_pil
from utils.genextend_inference_utils import adjust_statistics_to_match_reference
from create_graph import path_visualization, graph_pruning, get_motion_reps_tensor, path_visualization_v2
def search_path_dp(graph, audio_low_np, audio_high_np, loop_penalty=0.1, top_k=1, search_mode="both", continue_penalty=0.1):
T = audio_low_np.shape[0] # Total time steps
N = len(graph.vs) # Total number of nodes in the graph
# Initialize DP tables
min_cost = [{} for _ in range(T)] # min_cost[t][node_index] = list of tuples: (cost, prev_node_index, prev_tuple_index, non_continue_count, visited_nodes)
# Initialize the first time step
start_nodes = [v for v in graph.vs if v['previous'] is None or v['previous'] == -1]
for node in start_nodes:
node_index = node.index
motion_low = node['motion_low'] # Shape: [C]
motion_high = node['motion_high'] # Shape: [C]
# Cost using cosine similarity
if search_mode == "both":
cost = 2 - (np.dot(audio_low_np[0], motion_low.T) + np.dot(audio_high_np[0], motion_high.T))
elif search_mode == "high_level":
cost = 1 - np.dot(audio_high_np[0], motion_high.T)
elif search_mode == "low_level":
cost = 1 - np.dot(audio_low_np[0], motion_low.T)
visited_nodes = {node_index: 1} # Initialize visit count as a dictionary
min_cost[0][node_index] = [ (cost, None, None, 0, visited_nodes) ] # Initialize with no predecessor and 0 non-continue count
# DP over time steps
for t in range(1, T):
for node in graph.vs:
node_index = node.index
candidates = []
# Incoming edges to the current node
incoming_edges = graph.es.select(_to=node_index)
for edge in incoming_edges:
prev_node_index = edge.source
edge_id = edge.index
is_continue_edge = graph.es[edge_id]['is_continue']
prev_node = graph.vs[prev_node_index]
if prev_node_index in min_cost[t-1]:
for tuple_index, (prev_cost, _, _, prev_non_continue_count, prev_visited) in enumerate(min_cost[t-1][prev_node_index]):
# Loop punishment
if node_index in prev_visited:
loop_time = prev_visited[node_index] # Get the count of previous visits
loop_cost = prev_cost + loop_penalty * np.exp(loop_time) # Apply exponential penalty
new_visited = prev_visited.copy()
new_visited[node_index] = loop_time + 1 # Increment visit count
else:
loop_cost = prev_cost
new_visited = prev_visited.copy()
new_visited[node_index] = 1 # Initialize visit count for the new node
motion_low = node['motion_low'] # Shape: [C]
motion_high = node['motion_high'] # Shape: [C]
if search_mode == "both":
cost_increment = 2 - (np.dot(audio_low_np[t], motion_low.T) + np.dot(audio_high_np[t], motion_high.T))
elif search_mode == "high_level":
cost_increment = 1 - np.dot(audio_high_np[t], motion_high.T)
elif search_mode == "low_level":
cost_increment = 1 - np.dot(audio_low_np[t], motion_low.T)
# Check if the edge is "is_continue"
if not is_continue_edge:
non_continue_count = prev_non_continue_count + 1 # Increment the count of non-continue edges
else:
non_continue_count = prev_non_continue_count
# Apply the penalty based on the square of the number of non-continuous edges
continue_penalty_cost = continue_penalty * non_continue_count
total_cost = loop_cost + cost_increment + continue_penalty_cost
candidates.append( (total_cost, prev_node_index, tuple_index, non_continue_count, new_visited) )
# Keep the top k candidates
if candidates:
# Sort candidates by total_cost
candidates.sort(key=lambda x: x[0])
# Keep top k
min_cost[t][node_index] = candidates[:top_k]
else:
# No candidates, do nothing
pass
# Collect all possible end paths at time T-1
end_candidates = []
for node_index, tuples in min_cost[T-1].items():
for tuple_index, (cost, _, _, _, _) in enumerate(tuples):
end_candidates.append( (cost, node_index, tuple_index) )
if not end_candidates:
print("No valid path found.")
return [], []
# Sort end candidates by cost
end_candidates.sort(key=lambda x: x[0])
# Keep top k paths
top_k_paths_info = end_candidates[:top_k]
# Reconstruct the paths
optimal_paths = []
is_continue_lists = []
for final_cost, node_index, tuple_index in top_k_paths_info:
optimal_path_indices = []
current_node_index = node_index
current_tuple_index = tuple_index
for t in range(T-1, -1, -1):
optimal_path_indices.append(current_node_index)
tuple_data = min_cost[t][current_node_index][current_tuple_index]
_, prev_node_index, prev_tuple_index, _, _ = tuple_data
current_node_index = prev_node_index
current_tuple_index = prev_tuple_index
if current_node_index is None:
break # Reached the start node
optimal_path_indices = optimal_path_indices[::-1] # Reverse to get correct order
optimal_path = [graph.vs[idx] for idx in optimal_path_indices]
optimal_paths.append(optimal_path)
# Extract continuity information
is_continue = []
for i in range(len(optimal_path) - 1):
edge_id = graph.get_eid(optimal_path[i].index, optimal_path[i + 1].index)
is_cont = graph.es[edge_id]['is_continue']
is_continue.append(is_cont)
is_continue_lists.append(is_continue)
print("Top {} Paths:".format(len(optimal_paths)))
for i, path in enumerate(optimal_paths):
path_indices = [node.index for node in path]
print("Path {}: Cost: {}, Nodes: {}".format(i+1, top_k_paths_info[i][0], path_indices))
return optimal_paths, is_continue_lists
def test_fn(model, device, iteration, candidate_json_path, test_path, cfg, audio_path, **kwargs):
torch.set_grad_enabled(False)
pool_path = candidate_json_path.replace("data_json", "cached_graph").replace(".json", ".pkl")
graph = igraph.Graph.Read_Pickle(fname=pool_path)
# print(len(graph.vs))
save_dir = os.path.join(test_path, f"retrieved_motions_{iteration}")
os.makedirs(save_dir, exist_ok=True)
actual_model = model.module if isinstance(model, torch.nn.parallel.DistributedDataParallel) else model
actual_model.eval()
# with open(candidate_json_path, 'r') as f:
# candidate_data = json.load(f)
all_motions = {}
for i, node in enumerate(graph.vs):
if all_motions.get(node["name"]) is None:
all_motions[node["name"]] = [node["axis_angle"].reshape(-1)]
else:
all_motions[node["name"]].append(node["axis_angle"].reshape(-1))
for k, v in all_motions.items():
all_motions[k] = np.stack(v) # T, J*3
# print(k, all_motions[k].shape)
window_size = cfg.data.pose_length
motion_high_all = []
motion_low_all = []
for k, v in all_motions.items():
motion_tensor = torch.from_numpy(v).float().to(device).unsqueeze(0)
_, t, _ = motion_tensor.shape
if t >= window_size:
num_chunks = t // window_size
motion_high_list = []
motion_low_list = []
for i in range(num_chunks):
start_idx = i * window_size
end_idx = start_idx + window_size
motion_slice = motion_tensor[:, start_idx:end_idx, :]
motion_features = actual_model.get_motion_features(motion_slice)
motion_low = motion_features["motion_low"].cpu().numpy()
motion_high = motion_features["motion_cls"].unsqueeze(0).repeat(1, motion_low.shape[1], 1).cpu().numpy()
motion_high_list.append(motion_high[0])
motion_low_list.append(motion_low[0])
remain_length = t % window_size
if remain_length > 0:
start_idx = t - window_size
motion_slice = motion_tensor[:, start_idx:, :]
motion_features = actual_model.get_motion_features(motion_slice)
# motion_high = motion_features["motion_high_weight"].cpu().numpy()
motion_low = motion_features["motion_low"].cpu().numpy()
motion_high = motion_features["motion_cls"].unsqueeze(0).repeat(1, motion_low.shape[1], 1).cpu().numpy()
motion_high_list.append(motion_high[0][-remain_length:])
motion_low_list.append(motion_low[0][-remain_length:])
motion_high_all.append(np.concatenate(motion_high_list, axis=0))
motion_low_all.append(np.concatenate(motion_low_list, axis=0))
else: # t < window_size:
gap = window_size - t
motion_slice = torch.cat([motion_tensor, torch.zeros((motion_tensor.shape[0], gap, motion_tensor.shape[2])).to(motion_tensor.device)], 1)
motion_features = actual_model.get_motion_features(motion_slice)
# motion_high = motion_features["motion_high_weight"].cpu().numpy()
motion_low = motion_features["motion_low"].cpu().numpy()
motion_high = motion_features["motion_cls"].unsqueeze(0).repeat(1, motion_low.shape[1], 1).cpu().numpy()
motion_high_all.append(motion_high[0][:t])
motion_low_all.append(motion_low[0][:t])
motion_high_all = np.concatenate(motion_high_all, axis=0)
motion_low_all = np.concatenate(motion_low_all, axis=0)
# print(motion_high_all.shape, motion_low_all.shape, len(graph.vs))
motion_low_all = motion_low_all / np.linalg.norm(motion_low_all, axis=1, keepdims=True)
motion_high_all = motion_high_all / np.linalg.norm(motion_high_all, axis=1, keepdims=True)
assert motion_high_all.shape[0] == len(graph.vs)
assert motion_low_all.shape[0] == len(graph.vs)
for i, node in enumerate(graph.vs):
node["motion_high"] = motion_high_all[i]
node["motion_low"] = motion_low_all[i]
graph = graph_pruning(graph)
# for gradio, use a subgraph
if len(graph.vs) > 1800:
gap = len(graph.vs) - 1800
start_d = random.randint(0, 1800)
graph.delete_vertices(range(start_d, start_d + gap))
ascc_2 = graph.clusters(mode="STRONG")
graph = ascc_2.giant()
# drop the id of gt
idx = 0
audio_waveform, sr = librosa.load(audio_path)
audio_waveform = librosa.resample(audio_waveform, orig_sr=sr, target_sr=cfg.data.audio_sr)
audio_tensor = torch.from_numpy(audio_waveform).float().to(device).unsqueeze(0)
target_length = audio_tensor.shape[1] // cfg.data.audio_sr * 30
window_size = int(cfg.data.audio_sr * (cfg.data.pose_length / 30))
_, t = audio_tensor.shape
audio_low_list = []
audio_high_list = []
if t >= window_size:
num_chunks = t // window_size
# print(num_chunks, t % window_size)
for i in range(num_chunks):
start_idx = i * window_size
end_idx = start_idx + window_size
# print(start_idx, end_idx, window_size)
audio_slice = audio_tensor[:, start_idx:end_idx]
model_out_candidates = actual_model.get_audio_features(audio_slice)
audio_low = model_out_candidates["audio_low"]
# audio_high = model_out_candidates["audio_high_weight"]
audio_high = model_out_candidates["audio_cls"].unsqueeze(0).repeat(1, audio_low.shape[1], 1)
# print(audio_low.shape, audio_high.shape)
audio_low = F.normalize(audio_low, dim=2)[0].cpu().numpy()
audio_high = F.normalize(audio_high, dim=2)[0].cpu().numpy()
audio_low_list.append(audio_low)
audio_high_list.append(audio_high)
# print(audio_low.shape, audio_high.shape)
remain_length = t % window_size
if remain_length > 1:
start_idx = t - window_size
audio_slice = audio_tensor[:, start_idx:]
model_out_candidates = actual_model.get_audio_features(audio_slice)
audio_low = model_out_candidates["audio_low"]
# audio_high = model_out_candidates["audio_high_weight"]
audio_high = model_out_candidates["audio_cls"].unsqueeze(0).repeat(1, audio_low.shape[1], 1)
gap = target_length - np.concatenate(audio_low_list, axis=0).shape[1]
audio_low = F.normalize(audio_low, dim=2)[0][-gap:].cpu().numpy()
audio_high = F.normalize(audio_high, dim=2)[0][-gap:].cpu().numpy()
# print(audio_low.shape, audio_high.shape)
audio_low_list.append(audio_low)
audio_high_list.append(audio_high)
else:
gap = window_size - t
audio_slice = audio_tensor
model_out_candidates = actual_model.get_audio_features(audio_slice)
audio_low = model_out_candidates["audio_low"]
# audio_high = model_out_candidates["audio_high_weight"]
audio_high = model_out_candidates["audio_cls"].unsqueeze(0).repeat(1, audio_low.shape[1], 1)
gap = target_length - np.concatenate(audio_low_list, axis=0).shape[1]
audio_low = F.normalize(audio_low, dim=2)[0][:gap].cpu().numpy()
audio_high = F.normalize(audio_high, dim=2)[0][:gap].cpu().numpy()
audio_low_list.append(audio_low)
audio_high_list.append(audio_high)
audio_low_all = np.concatenate(audio_low_list, axis=0)
audio_high_all = np.concatenate(audio_high_list, axis=0)
path_list, is_continue_list = search_path_dp(graph, audio_low_all, audio_high_all, top_k=1, search_mode="both")
res_motion = []
counter = 0
for path, is_continue in zip(path_list, is_continue_list):
# print(path)
# res_motion_current = path_visualization(
# graph, path, is_continue, os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4"), audio_path=audio_path, return_motion=True, verbose_continue=True
# )
res_motion_current = path_visualization_v2(
graph, path, is_continue, os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4"), audio_path=audio_path, return_motion=True, verbose_continue=True
)
video_temp_path = os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4")
video_reader = VideoReader(video_temp_path)
video_np = []
for i in range(len(video_reader)):
if i == 0: continue
video_frame = video_reader[i].asnumpy()
video_np.append(Image.fromarray(video_frame))
adjusted_video_pil = adjust_statistics_to_match_reference([video_np])
save_videos_from_pil(adjusted_video_pil[0], os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4"), fps=30, bitrate=2000000)
audio_temp_path = audio_path
lipsync_output_path = os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4")
checkpoint_path = './Wav2Lip/checkpoints/wav2lip_gan.pth' # Update this path to your Wav2Lip checkpoint
os.system(f'python ./Wav2Lip/inference.py --checkpoint_path {checkpoint_path} --face {video_temp_path} --audio {audio_temp_path} --outfile {lipsync_output_path} --nosmooth')
res_motion.append(res_motion_current)
np.savez(os.path.join(save_dir, f"audio_{idx}_retri_{counter}.npz"), motion=res_motion_current)
start_node = path[1].index
end_node = start_node + 100
print(f"delete gt-nodes {start_node}, {end_node}")
nodes_to_delete = list(range(start_node, end_node))
graph.delete_vertices(nodes_to_delete)
graph = graph_pruning(graph)
path_list, is_continue_list = search_path_dp(graph, audio_low_all, audio_high_all, top_k=1, search_mode="both")
res_motion = []
counter = 1
for path, is_continue in zip(path_list, is_continue_list):
res_motion_current = path_visualization(
graph, path, is_continue, os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4"), audio_path=audio_path, return_motion=True, verbose_continue=True
)
video_temp_path = os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4")
video_reader = VideoReader(video_temp_path)
video_np = []
for i in range(len(video_reader)):
if i == 0: continue
video_frame = video_reader[i].asnumpy()
video_np.append(Image.fromarray(video_frame))
adjusted_video_pil = adjust_statistics_to_match_reference([video_np])
save_videos_from_pil(adjusted_video_pil[0], os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4"), fps=30, bitrate=2000000)
audio_temp_path = audio_path
lipsync_output_path = os.path.join(save_dir, f"audio_{idx}_retri_{counter}.mp4")
checkpoint_path = './Wav2Lip/checkpoints/wav2lip_gan.pth' # Update this path to your Wav2Lip checkpoint
os.system(f'python ./Wav2Lip/inference.py --checkpoint_path {checkpoint_path} --face {video_temp_path} --audio {audio_temp_path} --outfile {lipsync_output_path} --nosmooth')
res_motion.append(res_motion_current)
np.savez(os.path.join(save_dir, f"audio_{idx}_retri_{counter}.npz"), motion=res_motion_current)
result = [
os.path.join(save_dir, f"audio_{idx}_retri_0.mp4"),
os.path.join(save_dir, f"audio_{idx}_retri_1.mp4"),
os.path.join(save_dir, f"audio_{idx}_retri_0.npz"),
os.path.join(save_dir, f"audio_{idx}_retri_1.npz")
]
return result
def init_class(module_name, class_name, config, **kwargs):
module = importlib.import_module(module_name)
model_class = getattr(module, class_name)
instance = model_class(config, **kwargs)
return instance
def seed_everything(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def prepare_all(yaml_name):
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default=yaml_name)
parser.add_argument("--debug", action="store_true", help="Enable debugging mode")
parser.add_argument('overrides', nargs=argparse.REMAINDER)
args = parser.parse_args()
if args.config.endswith(".yaml"):
config = OmegaConf.load(args.config)
config.exp_name = args.config.split("/")[-1][:-5]
else:
raise ValueError("Unsupported config file format. Only .yaml files are allowed.")
save_dir = os.path.join(config.output_dir, config.exp_name)
os.makedirs(save_dir, exist_ok=True)
return config
def save_first_10_seconds(video_path, output_path="./save_video.mp4"):
import cv2
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
frames_to_save = fps * 10
frame_count = 0
while cap.isOpened() and frame_count < frames_to_save:
ret, frame = cap.read()
if not ret:
break
out.write(frame)
frame_count += 1
cap.release()
out.release()
character_name_to_yaml = {
"speaker8_jjRWaMCWs44_00-00-30.16_00-00-33.32.mp4": "./datasets/data_json/youtube_test/speaker8.json",
"speaker7_iuYlGRnC7J8_00-00-0.00_00-00-3.25.mp4": "./datasets/data_json/youtube_test/speaker7.json",
"speaker9_o7Ik1OB4TaE_00-00-38.15_00-00-42.33.mp4": "./datasets/data_json/youtube_test/speaker9.json",
"1wrQ6Msp7wM_00-00-39.69_00-00-45.68.mp4": "./datasets/data_json/youtube_test/speaker1.json",
"101099-00_18_09-00_18_19.mp4": "./datasets/data_json/show_oliver_test/Stupid_Watergate_-_Last_Week_Tonight_with_John_Oliver_HBO-FVFdsl29s_Q.mkv.json",
}
@spaces.GPU(duration=240)
def tango(audio_path, character_name, seed, create_graph=False, video_folder_path=None):
cfg = prepare_all("./configs/gradio.yaml")
cfg.seed = seed
seed_everything(cfg.seed)
experiment_ckpt_dir = experiment_log_dir = os.path.join(cfg.output_dir, cfg.exp_name)
saved_audio_path = "./saved_audio.wav"
sample_rate, audio_waveform = audio_path
sf.write(saved_audio_path, audio_waveform, sample_rate)
audio_waveform, sample_rate = librosa.load(saved_audio_path)
# print(audio_waveform.shape)
resampled_audio = librosa.resample(audio_waveform, orig_sr=sample_rate, target_sr=16000)
required_length = int(16000 * (128 / 30)) * 2
resampled_audio = resampled_audio[:required_length]
sf.write(saved_audio_path, resampled_audio, 16000)
audio_path = saved_audio_path
yaml_name = character_name_to_yaml.get(character_name.split("/")[-1], "./datasets/data_json/youtube_test/speaker1.json")
cfg.data.test_meta_paths = yaml_name
print(yaml_name, character_name.split("/")[-1])
if character_name.split("/")[-1] not in character_name_to_yaml.keys():
create_graph=True
# load video, and save it to "./save_video.mp4 for the first 20s of the video."
os.makedirs("./outputs/tmpvideo/", exist_ok=True)
save_first_10_seconds(character_name, "./outputs/tmpvideo/save_video.mp4")
if create_graph:
video_folder_path = "./outputs/tmpvideo/"
data_save_path = "./outputs/tmpdata/"
json_save_path = "./outputs/save_video.json"
graph_save_path = "./outputs/save_video.pkl"
os.system(f"cd ./SMPLer-X/ && python app.py --video_folder_path {video_folder_path} --data_save_path {data_save_path} --json_save_path {json_save_path} && cd ..")
os.system(f"python ./create_graph.py --json_save_path {json_save_path} --graph_save_path {graph_save_path}")
cfg.data.test_meta_paths = json_save_path
smplx_model = smplx.create(
"./emage/smplx_models/",
model_type='smplx',
gender='NEUTRAL_2020',
use_face_contour=False,
num_betas=300,
num_expression_coeffs=100,
ext='npz',
use_pca=False,
)
model = init_class(cfg.model.name_pyfile, cfg.model.class_name, cfg)
for param in model.parameters():
param.requires_grad = False
model.smplx_model = smplx_model
model.get_motion_reps = get_motion_reps_tensor
local_rank = 0
torch.cuda.set_device(local_rank)
device = torch.device("cuda", local_rank)
smplx_model = smplx_model.to(device).eval()
model = model.to(device)
model.smplx_model = model.smplx_model.to(device)
checkpoint_path = "./datasets/cached_ckpts/ckpt.pth"
checkpoint = torch.load(checkpoint_path)
state_dict = checkpoint['model_state_dict']
new_state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
model.load_state_dict(new_state_dict, strict=False)
test_path = os.path.join(experiment_ckpt_dir, f"test_{0}")
os.makedirs(test_path, exist_ok=True)
result = test_fn(model, device, 0, cfg.data.test_meta_paths, test_path, cfg, audio_path)
gc.collect()
torch.cuda.empty_cache()
return result
examples_audio = [
["./datasets/cached_audio/example_male_voice_9_seconds.wav"],
["./datasets/cached_audio/example_female_voice_9_seconds.wav"],
]
examples_video = [
["./datasets/cached_audio/speaker8_jjRWaMCWs44_00-00-30.16_00-00-33.32.mp4"],
["./datasets/cached_audio/speaker7_iuYlGRnC7J8_00-00-0.00_00-00-3.25.mp4"],
["./datasets/cached_audio/speaker9_o7Ik1OB4TaE_00-00-38.15_00-00-42.33.mp4"],
["./datasets/cached_audio/1wrQ6Msp7wM_00-00-39.69_00-00-45.68.mp4"],
["./datasets/cached_audio/101099-00_18_09-00_18_19.mp4"],
]
combined_examples = [
["./datasets/cached_audio/example_male_voice_9_seconds.wav", "./datasets/cached_audio/speaker9_o7Ik1OB4TaE_00-00-38.15_00-00-42.33.mp4", 2024],
["./datasets/cached_audio/example_male_voice_9_seconds.wav", "./datasets/cached_audio/speaker7_iuYlGRnC7J8_00-00-0.00_00-00-3.25.mp4", 2024],
["./datasets/cached_audio/example_male_voice_9_seconds.wav", "./datasets/cached_audio/101099-00_18_09-00_18_19.mp4", 2024],
["./datasets/cached_audio/example_female_voice_9_seconds.wav", "./datasets/cached_audio/1wrQ6Msp7wM_00-00-39.69_00-00-45.68.mp4", 2024],
["./datasets/cached_audio/example_female_voice_9_seconds.wav", "./datasets/cached_audio/speaker8_jjRWaMCWs44_00-00-30.16_00-00-33.32.mp4", 2024],
]
def make_demo():
with gr.Blocks(analytics_enabled=False) as Interface:
gr.Markdown(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<div>
<h1>TANGO</h1>
<span>Generating full-body talking videos from audio and reference video</span>
<h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
<a href='https://h-liu1997.github.io/'>Haiyang Liu</a>, \
<a href='https://yangxingchao.github.io/'>Xingchao Yang</a>, \
<a href=''>Tomoya Akiyama</a>, \
<a href='https://sky24h.github.io/'> Yuantian Huang</a>, \
<a href=''>Qiaoge Li</a>, \
<a href='https://www.tut.ac.jp/english/university/faculty/cs/164.html'>Shigeru Kuriyama</a>, \
<a href='https://taketomitakafumi.sakura.ne.jp/web/en/'>Takafumi Taketomi</a>\
</h2>
<br>
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
<a href="https://arxiv.org/abs/2410.04221"><img src="https://img.shields.io/badge/arXiv-2410.04221-blue"></a>
<a href="https://pantomatrix.github.io/TANGO/"><img src="https://img.shields.io/badge/Project_Page-TANGO-orange" alt="Project Page"></a>
<a href="https://github.com/CyberAgentAILab/TANGO"><img src="https://img.shields.io/badge/Github-Code-green"></a>
<a href="https://github.com/CyberAgentAILab/TANGO"><img src="https://img.shields.io/github/stars/CyberAgentAILab/TANGO
"></a>
</div>
</div>
</div>
"""
)
# Create a gallery with 5 videos
with gr.Row():
video1 = gr.Video(value="./datasets/cached_audio/demo1.mp4", label="Demo 0")
video2 = gr.Video(value="./datasets/cached_audio/demo2.mp4", label="Demo 1")
video3 = gr.Video(value="./datasets/cached_audio/demo3.mp4", label="Demo 2")
video4 = gr.Video(value="./datasets/cached_audio/demo4.mp4", label="Demo 3")
video5 = gr.Video(value="./datasets/cached_audio/demo5.mp4", label="Demo 4")
with gr.Row():
video1 = gr.Video(value="./datasets/cached_audio/demo6.mp4", label="Demo 5")
video2 = gr.Video(value="./datasets/cached_audio/demo0.mp4", label="Demo 6")
video3 = gr.Video(value="./datasets/cached_audio/demo7.mp4", label="Demo 7")
video4 = gr.Video(value="./datasets/cached_audio/demo8.mp4", label="Demo 8")
video5 = gr.Video(value="./datasets/cached_audio/demo9.mp4", label="Demo 9")
with gr.Row():
gr.Markdown(
"""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
This is an open-source project supported by Hugging Face's free ZeroGPU. Runtime is limited to 300s, so it operates in low-quality mode. Some generated results from high-quality mode are shown above.
</div>
"""
)
with gr.Row():
with gr.Column(scale=4):
video_output_1 = gr.Video(label="Generated video - 1",
interactive=False,
autoplay=False,
loop=False,
show_share_button=True)
with gr.Column(scale=4):
video_output_2 = gr.Video(label="Generated video - 2",
interactive=False,
autoplay=False,
loop=False,
show_share_button=True)
with gr.Column(scale=1):
file_output_1 = gr.File(label="Download 3D Motion and Visualize in Blender")
file_output_2 = gr.File(label="Download 3D Motion and Visualize in Blender")
gr.Markdown("""
<h4 style="text-align: left;">
Details of the low-quality mode:
<br>
1. Lower resolution.
<br>
2. More discontinuous graph nodes (causing noticeable "frame jumps").
<br>
3. Utilizes open-source tools like SMPLerX-s-model, Wav2Lip, and FiLM for faster processing.
<br>
4. only use first 8 seconds of your input audio.
<br>
5. custom character for a video up to 10 seconds.
<br>
<br>
Feel free to open an issue on GitHub or contact the authors if this does not meet your needs.
</h4>
""")
with gr.Row():
with gr.Column(scale=1):
audio_input = gr.Audio(label="Upload your audio")
seed_input = gr.Number(label="Seed", value=2024, interactive=True)
with gr.Column(scale=2):
gr.Examples(
examples=examples_audio,
inputs=[audio_input],
outputs=[video_output_1, video_output_2, file_output_1, file_output_2],
label="Select existing Audio examples",
cache_examples=False
)
with gr.Column(scale=1):
video_input = gr.Video(label="Your Character", elem_classes="video")
with gr.Column(scale=2):
gr.Examples(
examples=examples_video,
inputs=[video_input], # Correctly refer to video input
outputs=[video_output_1, video_output_2, file_output_1, file_output_2],
label="Character Examples",
cache_examples=False
)
# Fourth row: Generate video button
with gr.Row():
run_button = gr.Button("Generate Video")
# Define button click behavior
run_button.click(
fn=tango,
inputs=[audio_input, video_input, seed_input],
outputs=[video_output_1, video_output_2, file_output_1, file_output_2]
)
# with gr.Row():
# with gr.Column(scale=4):
# print(combined_examples)
# gr.Examples(
# examples=combined_examples,
# inputs=[audio_input, video_input, seed_input], # Both audio and video as inputs
# outputs=[video_output_1, video_output_2, file_output_1, file_output_2],
# fn=tango, # Function that processes both audio and video inputs
# label="Select Combined Audio and Video Examples (Cached)",
# cache_examples=True
# )
return Interface
if __name__ == "__main__":
os.environ["MASTER_ADDR"]='127.0.0.1'
os.environ["MASTER_PORT"]='8675'
# #os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL"
demo = make_demo()
demo.launch(share=True) |