Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -20,6 +20,7 @@ class AdvancedRAGChatbot:
|
|
20 |
llm_model: str = "llama-3.3-70b-versatile",
|
21 |
temperature: float = 0.7,
|
22 |
retrieval_k: int = 5):
|
|
|
23 |
self.embeddings = self._configure_embeddings(embedding_model)
|
24 |
self.semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
|
25 |
self.sentiment_analyzer = pipeline("sentiment-analysis")
|
@@ -31,10 +32,12 @@ class AdvancedRAGChatbot:
|
|
31 |
self.qa_chain = self._create_conversational_retrieval_chain()
|
32 |
|
33 |
def _configure_embeddings(self, model_name: str):
|
|
|
34 |
encode_kwargs = {'normalize_embeddings': True, 'show_progress_bar': True}
|
35 |
return HuggingFaceBgeEmbeddings(model_name=model_name, encode_kwargs=encode_kwargs)
|
36 |
|
37 |
def _configure_llm(self, model_name: str, temperature: float):
|
|
|
38 |
return ChatGroq(
|
39 |
model_name=model_name,
|
40 |
temperature=temperature,
|
@@ -43,14 +46,24 @@ class AdvancedRAGChatbot:
|
|
43 |
)
|
44 |
|
45 |
def _initialize_vector_database(self, persist_directory: str = 'vector_db'):
|
|
|
46 |
return Chroma(persist_directory=persist_directory, embedding_function=self.embeddings)
|
47 |
|
48 |
def _configure_retriever(self, retrieval_k: int):
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
def _create_conversational_retrieval_chain(self):
|
|
|
52 |
template = """
|
53 |
-
You are a helpful AI assistant.
|
|
|
54 |
|
55 |
Context: {context}
|
56 |
Chat History: {chat_history}
|
@@ -68,64 +81,111 @@ class AdvancedRAGChatbot:
|
|
68 |
)
|
69 |
|
70 |
def process_query(self, query: str) -> Dict[str, Any]:
|
|
|
|
|
71 |
semantic_score = self.semantic_model.encode([query])[0]
|
72 |
sentiment_result = self.sentiment_analyzer(query)[0]
|
73 |
entities = self.ner_pipeline(query)
|
|
|
|
|
74 |
result = self.qa_chain({"question": query})
|
75 |
|
76 |
-
|
77 |
"response": result['answer'],
|
78 |
"source_documents": result.get('source_documents', []),
|
79 |
"semantic_similarity": semantic_score.tolist(),
|
80 |
"sentiment": sentiment_result,
|
81 |
-
"named_entities": entities
|
82 |
-
"contextual_information": result.get("source_documents", [])
|
83 |
}
|
84 |
-
return response_data
|
85 |
|
86 |
def main():
|
87 |
-
|
88 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
89 |
|
|
|
90 |
with st.sidebar:
|
91 |
-
st.header("
|
|
|
|
|
|
|
92 |
embedding_model = st.selectbox(
|
93 |
"Embedding Model",
|
94 |
["BAAI/bge-large-en-v1.5", "sentence-transformers/all-MiniLM-L6-v2"]
|
95 |
)
|
96 |
-
temperature = st.slider("
|
97 |
-
retrieval_k = st.slider("
|
|
|
|
|
|
|
|
|
98 |
|
|
|
99 |
chatbot = AdvancedRAGChatbot(
|
100 |
embedding_model=embedding_model,
|
101 |
temperature=temperature,
|
102 |
retrieval_k=retrieval_k
|
103 |
)
|
104 |
|
105 |
-
|
106 |
-
|
107 |
|
108 |
-
|
109 |
-
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
st.write(response['response'])
|
118 |
-
|
119 |
-
st.markdown("### Sentiment Analysis")
|
120 |
-
st.write(f"Sentiment: {response['sentiment']['label']} ({response['sentiment']['score']:.2%})")
|
121 |
-
|
122 |
-
st.markdown("### Named Entities")
|
123 |
-
for entity in response['named_entities']:
|
124 |
-
st.write(f"- {entity['word']} ({entity['entity']})")
|
125 |
-
|
126 |
-
st.markdown("### Source Documents")
|
127 |
-
for doc in response['source_documents']:
|
128 |
-
st.text_area("Source Document", doc.page_content, height=100)
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
if __name__ == "__main__":
|
131 |
-
main()
|
|
|
20 |
llm_model: str = "llama-3.3-70b-versatile",
|
21 |
temperature: float = 0.7,
|
22 |
retrieval_k: int = 5):
|
23 |
+
"""Initialize the Advanced RAG Chatbot with configurable parameters"""
|
24 |
self.embeddings = self._configure_embeddings(embedding_model)
|
25 |
self.semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
|
26 |
self.sentiment_analyzer = pipeline("sentiment-analysis")
|
|
|
32 |
self.qa_chain = self._create_conversational_retrieval_chain()
|
33 |
|
34 |
def _configure_embeddings(self, model_name: str):
|
35 |
+
"""Configure embeddings with normalization"""
|
36 |
encode_kwargs = {'normalize_embeddings': True, 'show_progress_bar': True}
|
37 |
return HuggingFaceBgeEmbeddings(model_name=model_name, encode_kwargs=encode_kwargs)
|
38 |
|
39 |
def _configure_llm(self, model_name: str, temperature: float):
|
40 |
+
"""Configure the Language Model with Groq"""
|
41 |
return ChatGroq(
|
42 |
model_name=model_name,
|
43 |
temperature=temperature,
|
|
|
46 |
)
|
47 |
|
48 |
def _initialize_vector_database(self, persist_directory: str = 'vector_db'):
|
49 |
+
"""Initialize the vector database"""
|
50 |
return Chroma(persist_directory=persist_directory, embedding_function=self.embeddings)
|
51 |
|
52 |
def _configure_retriever(self, retrieval_k: int):
|
53 |
+
"""Configure the document retriever"""
|
54 |
+
return self.vector_db.as_retriever(
|
55 |
+
search_kwargs={
|
56 |
+
"k": retrieval_k,
|
57 |
+
"search_type": "mmr",
|
58 |
+
"fetch_k": 20
|
59 |
+
}
|
60 |
+
)
|
61 |
|
62 |
def _create_conversational_retrieval_chain(self):
|
63 |
+
"""Create the conversational retrieval chain"""
|
64 |
template = """
|
65 |
+
You are a helpful AI assistant. Provide a precise and comprehensive answer
|
66 |
+
based on the context and chat history.
|
67 |
|
68 |
Context: {context}
|
69 |
Chat History: {chat_history}
|
|
|
81 |
)
|
82 |
|
83 |
def process_query(self, query: str) -> Dict[str, Any]:
|
84 |
+
"""Process the user query with multiple NLP techniques"""
|
85 |
+
# Advanced NLP Analysis
|
86 |
semantic_score = self.semantic_model.encode([query])[0]
|
87 |
sentiment_result = self.sentiment_analyzer(query)[0]
|
88 |
entities = self.ner_pipeline(query)
|
89 |
+
|
90 |
+
# RAG Query Processing
|
91 |
result = self.qa_chain({"question": query})
|
92 |
|
93 |
+
return {
|
94 |
"response": result['answer'],
|
95 |
"source_documents": result.get('source_documents', []),
|
96 |
"semantic_similarity": semantic_score.tolist(),
|
97 |
"sentiment": sentiment_result,
|
98 |
+
"named_entities": entities
|
|
|
99 |
}
|
|
|
100 |
|
101 |
def main():
|
102 |
+
# Page Configuration
|
103 |
+
st.set_page_config(
|
104 |
+
page_title="Advanced RAG Chatbot",
|
105 |
+
page_icon="π§ ",
|
106 |
+
layout="wide",
|
107 |
+
initial_sidebar_state="expanded"
|
108 |
+
)
|
109 |
|
110 |
+
# Sidebar Configuration
|
111 |
with st.sidebar:
|
112 |
+
st.header("π§ Chatbot Settings")
|
113 |
+
st.markdown("Customize your AI assistant's behavior")
|
114 |
+
|
115 |
+
# Model Configuration
|
116 |
embedding_model = st.selectbox(
|
117 |
"Embedding Model",
|
118 |
["BAAI/bge-large-en-v1.5", "sentence-transformers/all-MiniLM-L6-v2"]
|
119 |
)
|
120 |
+
temperature = st.slider("Creativity Level", 0.0, 1.0, 0.7, help="Higher values make responses more creative")
|
121 |
+
retrieval_k = st.slider("Context Depth", 1, 10, 5, help="Number of reference documents to retrieve")
|
122 |
+
|
123 |
+
# Additional Controls
|
124 |
+
st.divider()
|
125 |
+
reset_chat = st.button("π Reset Conversation")
|
126 |
|
127 |
+
# Initialize Chatbot
|
128 |
chatbot = AdvancedRAGChatbot(
|
129 |
embedding_model=embedding_model,
|
130 |
temperature=temperature,
|
131 |
retrieval_k=retrieval_k
|
132 |
)
|
133 |
|
134 |
+
# Main Chat Interface
|
135 |
+
st.title("π€ Advanced RAG Chatbot")
|
136 |
|
137 |
+
# Two-column layout
|
138 |
+
col1, col2 = st.columns(2)
|
139 |
|
140 |
+
with col1:
|
141 |
+
st.header("Input")
|
142 |
+
# Chat input with placeholder
|
143 |
+
user_input = st.text_area(
|
144 |
+
"Ask your question",
|
145 |
+
placeholder="Enter your query here...",
|
146 |
+
height=250
|
147 |
+
)
|
148 |
|
149 |
+
# Submit button
|
150 |
+
submit_button = st.button("Send Query", type="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
+
with col2:
|
153 |
+
st.header("Response")
|
154 |
+
# Response container
|
155 |
+
if submit_button and user_input:
|
156 |
+
with st.spinner("Processing your query..."):
|
157 |
+
try:
|
158 |
+
response = chatbot.process_query(user_input)
|
159 |
+
|
160 |
+
# Bot Response
|
161 |
+
st.markdown("#### Bot's Answer")
|
162 |
+
st.write(response['response'])
|
163 |
+
|
164 |
+
# Sentiment Analysis
|
165 |
+
st.markdown("#### Sentiment Analysis")
|
166 |
+
sentiment = response['sentiment']
|
167 |
+
st.metric(
|
168 |
+
label="Sentiment",
|
169 |
+
value=sentiment['label'],
|
170 |
+
delta=f"{sentiment['score']:.2%}"
|
171 |
+
)
|
172 |
+
|
173 |
+
# Named Entities
|
174 |
+
st.markdown("#### Detected Entities")
|
175 |
+
for entity in response['named_entities']:
|
176 |
+
st.text(f"{entity['word']} ({entity['entity']})")
|
177 |
+
|
178 |
+
# Source Documents
|
179 |
+
if response['source_documents']:
|
180 |
+
st.markdown("#### Reference Documents")
|
181 |
+
for i, doc in enumerate(response['source_documents'], 1):
|
182 |
+
with st.expander(f"Document {i}"):
|
183 |
+
st.write(doc.page_content)
|
184 |
+
|
185 |
+
except Exception as e:
|
186 |
+
st.error(f"An error occurred: {e}")
|
187 |
+
else:
|
188 |
+
st.info("Submit a query to see the AI's response")
|
189 |
+
|
190 |
if __name__ == "__main__":
|
191 |
+
main()
|