Change Liao commited on
Commit
65056d9
·
1 Parent(s): 25be1b2

update requriements.txt

Browse files
app.py CHANGED
@@ -15,23 +15,34 @@ from sqlitedict import SqliteDict
15
 
16
  import gradio as gr
17
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  from langchain.llms import AzureOpenAI
19
  from langchain.chat_models import AzureChatOpenAI
20
 
21
  from langchain.embeddings.openai import OpenAIEmbeddings
22
- from langchain.chains import ConversationalRetrievalChain
23
 
24
  from langchain.memory import ChatMessageHistory
25
- from langchain import PromptTemplate
 
26
  from langchain.vectorstores import Chroma
27
 
28
  from langchain.text_splitter import CharacterTextSplitter
29
- from langchain.memory import ConversationBufferMemory
30
- from langchain.document_loaders import DirectoryLoader
31
 
 
32
  from langchain.document_loaders import UnstructuredFileLoader
33
- from langchain.text_splitter import RecursiveCharacterTextSplitter
34
- from langchain.chains.summarize import load_summarize_chain
35
 
36
  import clickhouse_connect
37
  from pathlib import Path
@@ -41,21 +52,25 @@ from langchain.document_loaders import YoutubeLoader
41
  from azure_utils import AzureVoiceData
42
  from polly_utils import PollyVoiceData, NEURAL_ENGINE
43
  from contextlib import closing
 
 
44
 
45
  #os env
46
  os.environ["OPENAI_API_TYPE"] = "azure"
47
  os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview"
48
  os.environ["OPENAI_API_BASE"] = "https://civet-project-001.openai.azure.com/"
49
  os.environ["OPENAI_API_KEY"] = "0e3e5b666818488fa1b5cb4e4238ffa7"
 
 
50
  global_deployment_id = "CivetGPT"
51
  global_model_name = "gpt-35-turbo"
52
 
53
  #chroma settings
54
  chroma_api_impl = "HH_Azure_Openai"
55
- #root_file_path = "C:\\Users\\catsk\\SourceCode\\azure_openai_poc\\data\\"
56
  root_file_path = "./data/" #其實是data 存放的位置
57
  hr_source_path = "hr_source"
58
  ks_source_path = "ks_source"
 
59
 
60
  sqlite_name = "cache.sqlite3"
61
  sqlite_key="stored_files"
@@ -63,6 +78,7 @@ persist_db = "persist_db"
63
  hr_collection_name = "hr_db"
64
  chroma_db_impl="localdb+langchain"
65
  tmp_collection="tmp_collection"
 
66
 
67
  #global text setting
68
  inputText = "問題(按q 或Ctrl + c跳出): "
@@ -183,13 +199,13 @@ def get_prompt_summary_string():
183
 
184
  def get_prompt_template_string():
185
  today = datetime.date.today().strftime("%Y年%m月%d日")
186
- template_string = f"我是鴻海的員工, 你是一個超級助理. 今天是{today}".format(today=today)+"""
187
- 請根據歷史對話,針對這次的問題, 形成獨立問題並以中文作回答. 請優先從提供的文件中尋找答案, 你被允許回答不知道, 但回答不知道時需要給中央人資的客服聯絡窗口資訊.
188
  不論什麼問題, 都以中文回答
189
 
190
  歷史對話: {chat_history}
191
  這次的問題: {question}
192
- 超級助理:
193
  """
194
  return template_string
195
 
@@ -238,23 +254,58 @@ def local_vector_search(question_str,chat_history, collection_name = hr_collecti
238
 
239
  memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True, ai_prefix = "AI超級助理")
240
 
241
- llm = AzureChatOpenAI(
242
- deployment_name = global_deployment_id,
243
- model_name= global_model_name,
244
- temperature = 0.2)
 
 
 
 
 
245
 
246
  prompt = PromptTemplate(
247
  template=get_prompt_template_string(),
248
  input_variables=["question","chat_history"]
249
  )
250
  prompt.format(question=question_str,chat_history=chat_history)
251
- chain = ConversationalRetrievalChain.from_llm(
252
- llm=llm,
253
  retriever=vectorstore.as_retriever(),
254
  memory=memory,
255
  condense_question_prompt=prompt,
256
  )
257
- result = chain({"question": question_str, "chat_history":chat_history})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258
  return result["answer"]
259
 
260
  def make_markdown_table(array):
@@ -308,7 +359,6 @@ def num_of_collection(collection_name):
308
  number = client.get_collection(collection_name).count()
309
  return f"目前知識卷裡有{number}卷項目"
310
 
311
-
312
  def clear_tmp_collection():
313
  client = get_chroma_client(tmp_collection)
314
  client.delete_collection(name=tmp_collection)
@@ -481,7 +531,6 @@ def kh_update_km(files):
481
 
482
  return num_of_collection(tmp_collection)
483
 
484
-
485
  class Logger:
486
  def __init__(self, filename):
487
  self.terminal = sys.stdout
@@ -498,7 +547,6 @@ class Logger:
498
  def isatty(self):
499
  return False
500
 
501
-
502
  def read_logs():
503
  sys.stdout.flush()
504
  ansi_escape = re.compile(r'\x1B(?:[@-Z\\-_]|\[[0-?]*[ -/]*[@-~])')
@@ -506,6 +554,33 @@ def read_logs():
506
  with open("output.log", "r", encoding='UTF-8') as f:
507
  return ansi_escape.sub('', f.read())
508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
509
 
510
  def lunch_style(demo, logs=gr.Text()):
511
  sys.stdout = Logger("output.log")
@@ -530,7 +605,6 @@ def lunch_style(demo, logs=gr.Text()):
530
  def gradio_run():
531
  print("User Login")
532
  with gr.Blocks(theme='bethecloud/storj_theme') as demo:
533
-
534
  with gr.Row():
535
  gr.Markdown("# HH Azure Openai Demo")
536
  #Header section
@@ -636,18 +710,8 @@ def gradio_run():
636
  tmp_aud_file_url = "/file=" + tmp_aud_file.value['name']
637
  htm_audio = f'<audio><source src={tmp_aud_file_url} type="audio/mp3"></audio>'
638
  audio_html = gr.HTML(htm_audio, visible=False)
639
- def respond(message, chat_history):
640
- vector_search_message = local_vector_search(message, chat_history)
641
- chat_history.append((message, vector_search_message))
642
-
643
- html_audio, audio_file_path = do_html_audio_speak(vector_search_message)
644
- res, new_html_video, video_file_path = do_html_video_speak()
645
-
646
- if res.status_code == 200:
647
- return '', chat_history, new_html_video, ''
648
- else:
649
- return '', chat_history, htm_video, html_audio
650
  with gr.Column():
 
651
  gr.Markdown("""
652
  ### AI 虛擬客服:
653
  * 這是一個實驗性質的AI 客服
@@ -655,6 +719,7 @@ def gradio_run():
655
  * 想要放誰的頭像都可以, 要放董事長也可以.
656
  * 訂閱制(有效時間 6/13~7/13)
657
  """)
 
658
  with gr.Row():
659
  chatbot = gr.Chatbot(value=[], elem_id="chatbot").style(height=400)
660
  with gr.Row():
@@ -665,8 +730,26 @@ def gradio_run():
665
  )
666
  with gr.Column(scale=1):
667
  clear = gr.Button("清除")
668
- msg.submit(respond, [msg, chatbot], [msg, chatbot, video_html, audio_html], queue=True)
669
- clear.click(lambda: None, None, chatbot, queue=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
670
  #3rd youtube
671
  with gr.Tab("Youtube 影片摘要"):
672
  with gr.Row():
@@ -678,88 +761,48 @@ def gradio_run():
678
  with gr.Column(scale=1):
679
  youtube_summary_textbox=gr.Textbox(interactive=False, label="AI 解析", lines=20)
680
  youtube_analysis_btn.click(youtube_summary,youtube_link,youtube_summary_textbox)
681
- with gr.Tab("高雄市政府票証"):
682
- from langchain.agents import create_pandas_dataframe_agent
683
- import pandas as pd
684
- mypath = root_file_path+ks_source_path
685
- onlyfiles = os.listdir(mypath)
686
- df = pd.concat((pd.read_csv(os.path.join(mypath, filename)) for filename in onlyfiles))
687
  with gr.Row():
688
  gr.Markdown("""
689
- ### 使用方式
690
- 這是一個使用高雄公車票證資料, 運用AI協助決策的工具.
691
- 如果有出現error, 請重新刷新頁面. 有error 就代表運算到最後token 數量超出azure openai 上限了, 這部份還在想辦法調整中.
692
- """)
693
  invField = gr.Textbox(visible=False)
694
- gr.Examples(onlyfiles, label="資料庫檔案", inputs=invField, examples_per_page=4)
 
 
695
  with gr.Row():
696
  with gr.Column():
697
- davinci="text-davinci-003"
698
- llm = AzureOpenAI(
699
- deployment_name=davinci,
700
- model_name=davinci,
701
- max_tokens=2000,
702
- temperature=0,
703
- )
704
-
705
- agent=create_pandas_dataframe_agent(
706
- llm,
707
- df,
708
- max_iterations=30,
709
- return_intermediate_steps=False,
710
- verbose=True
711
- )
712
-
713
- def tmp_respond(prompt_str,message, chat_history):
714
- try:
715
- new_str=prompt_str.format(message=message, chat_history=chat_history)
716
- answer=agent.run(new_str)
717
- chat_history.append((message, answer))
718
- except Exception as e:
719
- response = str(e)
720
- print(f"Got error!{response}")
721
- if not response.startswith("Could not parse LLM output: `"):
722
- raise e
723
- answer = response.removeprefix("Could not parse LLM output: `").removesuffix("`")
724
- chat_history.append((message, answer))
725
- return '', chat_history
726
-
727
  tmp_chatbot = gr.Chatbot(value=[], elem_id="tmp_chatbot").style(height=500)
728
  with gr.Row():
729
  with gr.Column(scale=5):
730
- tmp_msg = gr.Textbox(
731
- show_label=False,
732
- placeholder="輸入你的問題",
733
- )
734
  with gr.Column(scale=1):
735
- tmp_clear = gr.Button("清除對話")
736
  with gr.Column():
737
- prompt_textbox=gr.Textbox("""
738
- 你是一位專業的資料科學家,有下列定義:
739
- 1.每個票卡序號代表一名乘客
740
- 2.原始票價視為花費或是消費
741
- 3.轉乘次數: 一名乘客在同一天有任意兩筆紀錄,其中一筆出下車站的資料等於另一筆進上車站的資料,其出下車站代表的車站的轉乘次數就要增加1.
742
- 歷史訊息是 {chat_history}
743
  請以中文回答我下面的問題:{message}
744
- """, lines=10, label="Prompt:有{chat_history}及{message}, 請至少保留{message}變數", interactive=True, max_lines=10)
745
- console=gr.Textbox(lines=11, label="Console",max_lines=11)
746
- tmp_msg.submit(tmp_respond, [prompt_textbox, tmp_msg, tmp_chatbot], [tmp_msg, tmp_chatbot], queue=True)
747
  tmp_clear.click(lambda: None, None, tmp_chatbot, queue=False)
748
  with gr.Row():
749
  gr.Examples([
750
- '你有哪些業者?',
751
- '0001站轉乘旅客所佔比例',
752
- '高雄捷運的2022年7月份運輸量與2022年6月份相比, 增減如何?',
753
- '請給我2022年6月至2022年7月之間, 轉乘數量最高排名前五名的車站?',
754
- '0001站 在2022年9月份轉乘數量是未知. 請依2022年7月份到2022年8月份的趨勢, 請以月份做為時間單位, 做出一個數學模型. 用此數學模型來預測 0001站 在2022年9月份的轉乘數量會多少, 增減如何?'
755
- ], label="訊息範例",inputs=tmp_msg)
756
  demo.queue(concurrency_count=10)
757
  lunch_style(demo,console)
758
 
759
- def test():
760
- mypath = "C:\\Users\\catsk\\SourceCode\\azure_openai_poc\\data\\ks_source_files"
761
- onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))]
762
- print(onlyfiles)
763
  gradio_run()
764
 
765
 
 
15
 
16
  import gradio as gr
17
 
18
+ from langchain import PromptTemplate
19
+ from langchain.agents import Tool
20
+ from langchain.agents import initialize_agent
21
+
22
+ from langchain.agents import AgentType
23
+
24
+ from langchain.chains import LLMMathChain
25
+ from langchain import SerpAPIWrapper
26
+ from langchain.chains import ConversationalRetrievalChain
27
+
28
+ from langchain.chains.summarize import load_summarize_chain
29
+
30
  from langchain.llms import AzureOpenAI
31
  from langchain.chat_models import AzureChatOpenAI
32
 
33
  from langchain.embeddings.openai import OpenAIEmbeddings
 
34
 
35
  from langchain.memory import ChatMessageHistory
36
+ from langchain.memory import ConversationBufferMemory
37
+
38
  from langchain.vectorstores import Chroma
39
 
40
  from langchain.text_splitter import CharacterTextSplitter
41
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
 
42
 
43
+ from langchain.document_loaders import DirectoryLoader
44
  from langchain.document_loaders import UnstructuredFileLoader
45
+
 
46
 
47
  import clickhouse_connect
48
  from pathlib import Path
 
52
  from azure_utils import AzureVoiceData
53
  from polly_utils import PollyVoiceData, NEURAL_ENGINE
54
  from contextlib import closing
55
+ from langchain.agents import create_pandas_dataframe_agent
56
+ import pandas as pd
57
 
58
  #os env
59
  os.environ["OPENAI_API_TYPE"] = "azure"
60
  os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview"
61
  os.environ["OPENAI_API_BASE"] = "https://civet-project-001.openai.azure.com/"
62
  os.environ["OPENAI_API_KEY"] = "0e3e5b666818488fa1b5cb4e4238ffa7"
63
+ os.environ["SERPAPI_API_KEY"] = "a5b67b8805b4e12b0ae147c9c6b2a7dbf3ab84fca5f24e531b6963b1f7fc1ff7"
64
+
65
  global_deployment_id = "CivetGPT"
66
  global_model_name = "gpt-35-turbo"
67
 
68
  #chroma settings
69
  chroma_api_impl = "HH_Azure_Openai"
 
70
  root_file_path = "./data/" #其實是data 存放的位置
71
  hr_source_path = "hr_source"
72
  ks_source_path = "ks_source"
73
+ believe_source_path = 'be_source'
74
 
75
  sqlite_name = "cache.sqlite3"
76
  sqlite_key="stored_files"
 
78
  hr_collection_name = "hr_db"
79
  chroma_db_impl="localdb+langchain"
80
  tmp_collection="tmp_collection"
81
+ davinci = "text-davinci-003"
82
 
83
  #global text setting
84
  inputText = "問題(按q 或Ctrl + c跳出): "
 
199
 
200
  def get_prompt_template_string():
201
  today = datetime.date.today().strftime("%Y年%m月%d日")
202
+ template_string = f"我是鴻海(等同Foxconn)的員工, 你是一個鴻海的人資專家. 今天是{today}".format(today=today)+"""
203
+ 請根據歷史對話,針對這次的問題, 形成獨立問題. 請優先從提供的文件中尋找答案, 你被允許回答不知道, 但回答不知道時需要給中央人資的客服聯絡窗口資訊.
204
  不論什麼問題, 都以中文回答
205
 
206
  歷史對話: {chat_history}
207
  這次的問題: {question}
208
+ 人資專家:
209
  """
210
  return template_string
211
 
 
254
 
255
  memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True, ai_prefix = "AI超級助理")
256
 
257
+ llm = AzureOpenAI(
258
+ deployment_name = global_deployment_id,
259
+ model_name= global_model_name,
260
+ temperature = 0.0)
261
+
262
+ chat_llm = AzureChatOpenAI(
263
+ deployment_name = global_deployment_id,
264
+ model_name= global_model_name,
265
+ temperature = 0.2)
266
 
267
  prompt = PromptTemplate(
268
  template=get_prompt_template_string(),
269
  input_variables=["question","chat_history"]
270
  )
271
  prompt.format(question=question_str,chat_history=chat_history)
272
+ km_chain = ConversationalRetrievalChain.from_llm(
273
+ llm=chat_llm,
274
  retriever=vectorstore.as_retriever(),
275
  memory=memory,
276
  condense_question_prompt=prompt,
277
  )
278
+ km_tool = Tool(
279
+ name='Knowledge Base',
280
+ func=km_chain.run,
281
+ description='一個非常有用的工具, 當要查詢任何公司政策以及鴻海相關資料都使用這個工具'
282
+ )
283
+
284
+ math_math = LLMMathChain(llm=llm,verbose=True)
285
+ math_tool = Tool(
286
+ name='Calculator',
287
+ func=math_math.run,
288
+ description='Useful for when you need to answer questions about math.'
289
+ )
290
+
291
+ search = SerpAPIWrapper()
292
+ search_tool = Tool(
293
+ name="Search",
294
+ func=search.run,
295
+ description="當你需要回答一般問題時,非常有用; 不可以用來回答任何跟鴻海有關的問題.",
296
+ )
297
+ tools=[math_tool,km_tool, search_tool]
298
+ agent=initialize_agent(
299
+ agent=AgentType.CHAT_ZERO_SHOT_REACT_DESCRIPTION,
300
+ tools=tools,
301
+ llm=chat_llm,
302
+ verbose=True,
303
+ memory=memory,
304
+ max_iterations=30,
305
+ )
306
+ result=km_chain(question_str)
307
+
308
+ #result=agent.run(question_str)
309
  return result["answer"]
310
 
311
  def make_markdown_table(array):
 
359
  number = client.get_collection(collection_name).count()
360
  return f"目前知識卷裡有{number}卷項目"
361
 
 
362
  def clear_tmp_collection():
363
  client = get_chroma_client(tmp_collection)
364
  client.delete_collection(name=tmp_collection)
 
531
 
532
  return num_of_collection(tmp_collection)
533
 
 
534
  class Logger:
535
  def __init__(self, filename):
536
  self.terminal = sys.stdout
 
547
  def isatty(self):
548
  return False
549
 
 
550
  def read_logs():
551
  sys.stdout.flush()
552
  ansi_escape = re.compile(r'\x1B(?:[@-Z\\-_]|\[[0-?]*[ -/]*[@-~])')
 
554
  with open("output.log", "r", encoding='UTF-8') as f:
555
  return ansi_escape.sub('', f.read())
556
 
557
+ def pandas_analysis(prompt_str, message, chat_history):
558
+ dir_path = f"{root_file_path}{believe_source_path}/*.csv"
559
+ res = glob.glob(dir_path)
560
+ df = pd.concat(map(pd.read_csv, res))
561
+ local_deploy_id= "text-davinci-003"
562
+ local_model_name = "text-davinci-003"
563
+ llm = AzureOpenAI(
564
+ deployment_name=local_deploy_id,
565
+ model_name=local_model_name,
566
+ max_tokens=2000,
567
+ temperature=0,
568
+ )
569
+
570
+ be_agent = create_pandas_dataframe_agent(
571
+ llm,
572
+ df,
573
+ prefix="Remove any ` from the Action Input",
574
+ max_iterations=30,
575
+ return_intermediate_steps=False,
576
+ max_execution_time=60,
577
+ handle_parsing_errors="Check your output and make sure it conforms!",
578
+ verbose=True)
579
+ new_str = prompt_str.format(message=message, chat_history=chat_history)
580
+ print(new_str)
581
+ answer = be_agent.run(new_str)
582
+ chat_history.append((message, answer))
583
+ return '', chat_history
584
 
585
  def lunch_style(demo, logs=gr.Text()):
586
  sys.stdout = Logger("output.log")
 
605
  def gradio_run():
606
  print("User Login")
607
  with gr.Blocks(theme='bethecloud/storj_theme') as demo:
 
608
  with gr.Row():
609
  gr.Markdown("# HH Azure Openai Demo")
610
  #Header section
 
710
  tmp_aud_file_url = "/file=" + tmp_aud_file.value['name']
711
  htm_audio = f'<audio><source src={tmp_aud_file_url} type="audio/mp3"></audio>'
712
  audio_html = gr.HTML(htm_audio, visible=False)
 
 
 
 
 
 
 
 
 
 
 
713
  with gr.Column():
714
+ isAudio = gr.Checkbox(label="是否要有語音", info="要開啟語音嗎?查詢時間會增長")
715
  gr.Markdown("""
716
  ### AI 虛擬客服:
717
  * 這是一個實驗性質的AI 客服
 
719
  * 想要放誰的頭像都可以, 要放董事長也可以.
720
  * 訂閱制(有效時間 6/13~7/13)
721
  """)
722
+
723
  with gr.Row():
724
  chatbot = gr.Chatbot(value=[], elem_id="chatbot").style(height=400)
725
  with gr.Row():
 
730
  )
731
  with gr.Column(scale=1):
732
  clear = gr.Button("清除")
733
+
734
+ def respond(message, chat_history):
735
+ vector_search_message = local_vector_search(message, chat_history)
736
+ chat_history.append((message, vector_search_message))
737
+ print("vector_search:"+vector_search_message)
738
+ if isAudio.value is False:
739
+ print("isAudio is False")
740
+ return '', chat_history, htm_video, ''
741
+ else:
742
+ print("isAudio is True")
743
+ html_audio, audio_file_path = do_html_audio_speak(vector_search_message)
744
+ res, new_html_video, video_file_path = do_html_video_speak()
745
+
746
+ if res.status_code == 200:
747
+ return '', chat_history, new_html_video, ''
748
+ else:
749
+ return '', chat_history, htm_video, html_audio
750
+
751
+ msg.submit(respond, [msg, chatbot], [msg, chatbot, video_html, audio_html], queue=True)
752
+ clear.click(lambda: None, None, chatbot, queue=False)
753
  #3rd youtube
754
  with gr.Tab("Youtube 影片摘要"):
755
  with gr.Row():
 
761
  with gr.Column(scale=1):
762
  youtube_summary_textbox=gr.Textbox(interactive=False, label="AI 解析", lines=20)
763
  youtube_analysis_btn.click(youtube_summary,youtube_link,youtube_summary_textbox)
764
+ with gr.Tab("統計助手"):
 
 
 
 
 
765
  with gr.Row():
766
  gr.Markdown("""
767
+ ### 使用方式
768
+ 已經讀取所有提供的csv 資料, 可以詢問資料任何問題(Talk to data)
769
+ 建議先詢問欄位後, 後續再構思其他問題
770
+ """)
771
  invField = gr.Textbox(visible=False)
772
+ dir_path = f"{root_file_path}{believe_source_path}/*.csv"
773
+ res = glob.glob(dir_path)
774
+ gr.Examples(res, label="資料庫檔案", inputs=invField, examples_per_page=4)
775
  with gr.Row():
776
  with gr.Column():
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
777
  tmp_chatbot = gr.Chatbot(value=[], elem_id="tmp_chatbot").style(height=500)
778
  with gr.Row():
779
  with gr.Column(scale=5):
780
+ tmp_msg = gr.Textbox(show_label=False,placeholder="輸入你的問題",)
 
 
 
781
  with gr.Column(scale=1):
782
+ tmp_clear = gr.Button("清��對話")
783
  with gr.Column():
784
+ prompt_textbox = gr.Textbox("""
785
+ 你是一位專業HR專家以及資料科學家,提供給你的資料是現有的人員資料表.
786
+ 有下列定義:
787
+
788
+ 1.
789
+
790
  請以中文回答我下面的問題:{message}
791
+ """, lines=10, label="Prompt:有{chat_history}及{message}, 請至少保留{message}變數",interactive=True, max_lines=10)
792
+ console = gr.Textbox(lines=11, label="Console", max_lines=11)
793
+ tmp_msg.submit(pandas_analysis, [prompt_textbox, tmp_msg, tmp_chatbot], [tmp_msg, tmp_chatbot],queue=True)
794
  tmp_clear.click(lambda: None, None, tmp_chatbot, queue=False)
795
  with gr.Row():
796
  gr.Examples([
797
+ '你有什麼欄位?',
798
+ '資料裡有屬於台灣(TW)的員工有多少位?',
799
+ '全台灣的員工, 每人每天問五個問題, 1個月花費多少錢?',
800
+ '如果龍華廠區的員工每人每天問3個問題,台灣員工每人每天問7個問題, 請問這樣一個月多少錢?'
801
+ ], label="訊息範例", inputs=tmp_msg)
802
+
803
  demo.queue(concurrency_count=10)
804
  lunch_style(demo,console)
805
 
 
 
 
 
806
  gradio_run()
807
 
808
 
cache.sqlite3 CHANGED
Binary files a/cache.sqlite3 and b/cache.sqlite3 differ
 
data/audios/tempfile.mp3 CHANGED
Binary files a/data/audios/tempfile.mp3 and b/data/audios/tempfile.mp3 differ
 
data/videos/tempfile.mp4 CHANGED
Binary files a/data/videos/tempfile.mp4 and b/data/videos/tempfile.mp4 differ
 
requirements.txt CHANGED
@@ -3,13 +3,16 @@ aiohttp==3.8.4
3
  aiosignal==1.3.1
4
  altair==5.0.1
5
  anyio==3.7.0
6
- argilla==1.9.0
7
  argon2-cffi==21.3.0
8
  argon2-cffi-bindings==21.2.0
9
  arrow==1.2.3
 
10
  asttokens==2.2.1
 
11
  async-timeout==4.0.2
12
  attrs==23.1.0
 
13
  backcall==0.2.0
14
  backoff==2.2.1
15
  beautifulsoup4==4.12.2
@@ -50,6 +53,7 @@ fonttools==4.39.4
50
  fqdn==1.5.1
51
  frozenlist==1.3.3
52
  fsspec==2023.6.0
 
53
  gradio==3.34.0
54
  gradio_client==0.2.6
55
  greenlet==2.0.2
@@ -69,17 +73,21 @@ jedi==0.18.2
69
  Jinja2==3.1.2
70
  jmespath==1.0.1
71
  joblib==1.2.0
 
72
  jsonpointer==2.3
73
  jsonschema==4.17.3
74
  jupyter-events==0.6.3
 
75
  jupyter_client==8.2.0
76
  jupyter_core==5.3.1
77
  jupyter_server==2.6.0
78
  jupyter_server_terminals==0.4.4
 
79
  jupyterlab-pygments==0.2.2
 
80
  kiwisolver==1.4.4
81
- langchain==0.0.200
82
- langchainplus-sdk==0.0.10
83
  linkify-it-py==2.0.2
84
  lxml==4.9.2
85
  lz4==4.3.2
@@ -115,9 +123,10 @@ openpyxl==3.1.2
115
  orjson==3.9.1
116
  overrides==7.3.1
117
  packaging==23.1
118
- pandas==1.5.3
119
  pandocfilters==1.5.0
120
  parso==0.8.3
 
121
  pdf2image==1.16.3
122
  pdfminer.six==20221105
123
  pickleshare==0.7.5
@@ -148,6 +157,8 @@ python-multipart==0.0.6
148
  python-pptx==0.6.21
149
  pytube==15.0.0
150
  pytz==2023.3
 
 
151
  PyYAML==6.0
152
  pyzmq==25.1.0
153
  regex==2023.6.3
@@ -169,6 +180,7 @@ SQLAlchemy==2.0.16
169
  sqlitedict==2.1.0
170
  stack-data==0.6.2
171
  starlette==0.27.0
 
172
  sympy==1.12
173
  tabulate==0.9.0
174
  tenacity==8.2.2
@@ -177,6 +189,7 @@ threadpoolctl==3.1.0
177
  tiktoken==0.4.0
178
  tinycss2==1.2.1
179
  tokenizers==0.13.3
 
180
  toolz==0.12.0
181
  tornado==6.3.2
182
  tqdm==4.65.0
@@ -188,7 +201,7 @@ tzdata==2023.3
188
  uc-micro-py==1.0.2
189
  unstructured==0.7.3
190
  uri-template==1.2.0
191
- urllib3
192
  uvicorn==0.22.0
193
  virtualenv==20.23.0
194
  watchfiles==0.19.0
 
3
  aiosignal==1.3.1
4
  altair==5.0.1
5
  anyio==3.7.0
6
+ argilla==1.10.0
7
  argon2-cffi==21.3.0
8
  argon2-cffi-bindings==21.2.0
9
  arrow==1.2.3
10
+ astor==0.8.1
11
  asttokens==2.2.1
12
+ async-lru==2.0.2
13
  async-timeout==4.0.2
14
  attrs==23.1.0
15
+ Babel==2.12.1
16
  backcall==0.2.0
17
  backoff==2.2.1
18
  beautifulsoup4==4.12.2
 
53
  fqdn==1.5.1
54
  frozenlist==1.3.3
55
  fsspec==2023.6.0
56
+ google-search-results==2.4.2
57
  gradio==3.34.0
58
  gradio_client==0.2.6
59
  greenlet==2.0.2
 
73
  Jinja2==3.1.2
74
  jmespath==1.0.1
75
  joblib==1.2.0
76
+ json5==0.9.14
77
  jsonpointer==2.3
78
  jsonschema==4.17.3
79
  jupyter-events==0.6.3
80
+ jupyter-lsp==2.2.0
81
  jupyter_client==8.2.0
82
  jupyter_core==5.3.1
83
  jupyter_server==2.6.0
84
  jupyter_server_terminals==0.4.4
85
+ jupyterlab==4.0.2
86
  jupyterlab-pygments==0.2.2
87
+ jupyterlab_server==2.23.0
88
  kiwisolver==1.4.4
89
+ langchain==0.0.217
90
+ langchainplus-sdk==0.0.17
91
  linkify-it-py==2.0.2
92
  lxml==4.9.2
93
  lz4==4.3.2
 
123
  orjson==3.9.1
124
  overrides==7.3.1
125
  packaging==23.1
126
+ pandas==2.0.2
127
  pandocfilters==1.5.0
128
  parso==0.8.3
129
+ patsy==0.5.3
130
  pdf2image==1.16.3
131
  pdfminer.six==20221105
132
  pickleshare==0.7.5
 
157
  python-pptx==0.6.21
158
  pytube==15.0.0
159
  pytz==2023.3
160
+ pywin32==306
161
+ pywinpty==2.0.10
162
  PyYAML==6.0
163
  pyzmq==25.1.0
164
  regex==2023.6.3
 
180
  sqlitedict==2.1.0
181
  stack-data==0.6.2
182
  starlette==0.27.0
183
+ statsmodels==0.14.0
184
  sympy==1.12
185
  tabulate==0.9.0
186
  tenacity==8.2.2
 
189
  tiktoken==0.4.0
190
  tinycss2==1.2.1
191
  tokenizers==0.13.3
192
+ tomli==2.0.1
193
  toolz==0.12.0
194
  tornado==6.3.2
195
  tqdm==4.65.0
 
201
  uc-micro-py==1.0.2
202
  unstructured==0.7.3
203
  uri-template==1.2.0
204
+ urllib3==2.0.3
205
  uvicorn==0.22.0
206
  virtualenv==20.23.0
207
  watchfiles==0.19.0