Change Liao
commited on
Commit
·
a9bbb0b
1
Parent(s):
ebf3e17
Update session key and related endpoint information
Browse files
app.py
CHANGED
@@ -59,15 +59,16 @@ import pandas as pd
|
|
59 |
#os env
|
60 |
os.environ["OPENAI_API_TYPE"] = "azure"
|
61 |
os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview"
|
62 |
-
os.environ["OPENAI_API_BASE"] = "https://
|
63 |
-
os.environ["OPENAI_API_KEY"] = "
|
64 |
os.environ["SERPAPI_API_KEY"] = "a5b67b8805b4e12b0ae147c9c6b2a7dbf3ab84fca5f24e531b6963b1f7fc1ff7"
|
65 |
|
66 |
-
global_deployment_id = "
|
67 |
-
global_model_name = "gpt-35-turbo"
|
68 |
|
69 |
#chroma settings
|
70 |
chroma_api_impl = "HH_Azure_Openai"
|
|
|
71 |
root_file_path = "./data/" #其實是data 存放的位置
|
72 |
hr_source_path = "hr_source"
|
73 |
ks_source_path = "ks_source"
|
@@ -79,7 +80,6 @@ persist_db = "persist_db"
|
|
79 |
hr_collection_name = "hr_db"
|
80 |
chroma_db_impl="localdb+langchain"
|
81 |
tmp_collection="tmp_collection"
|
82 |
-
davinci = "text-davinci-003"
|
83 |
|
84 |
#global text setting
|
85 |
inputText = "問題(按q 或Ctrl + c跳出): "
|
@@ -124,7 +124,9 @@ def get_openaiembeddings():
|
|
124 |
return OpenAIEmbeddings(
|
125 |
deployment="CivetGPT_embedding",
|
126 |
model="text-embedding-ada-002",
|
127 |
-
|
|
|
|
|
128 |
chunk_size=1
|
129 |
)
|
130 |
|
@@ -263,7 +265,8 @@ def local_vector_search(question_str,chat_history, collection_name = hr_collecti
|
|
263 |
chat_llm = AzureChatOpenAI(
|
264 |
deployment_name = global_deployment_id,
|
265 |
model_name= global_model_name,
|
266 |
-
temperature = 0.
|
|
|
267 |
|
268 |
prompt = PromptTemplate(
|
269 |
template=get_prompt_template_string(),
|
@@ -289,24 +292,20 @@ def local_vector_search(question_str,chat_history, collection_name = hr_collecti
|
|
289 |
description='Useful for when you need to answer questions about math.'
|
290 |
)
|
291 |
|
292 |
-
|
293 |
-
search_tool = Tool(
|
294 |
-
name="Search",
|
295 |
-
func=search.run,
|
296 |
-
description="當你需要回答一般問題時,非常有用; 不可以用來回答任何跟鴻海有關的問題.",
|
297 |
-
)
|
298 |
-
tools=[math_tool,km_tool, search_tool]
|
299 |
agent=initialize_agent(
|
300 |
-
agent=AgentType.
|
301 |
tools=tools,
|
302 |
llm=chat_llm,
|
303 |
verbose=True,
|
304 |
memory=memory,
|
305 |
max_iterations=30,
|
306 |
)
|
307 |
-
|
308 |
|
|
|
309 |
#result=agent.run(question_str)
|
|
|
310 |
return result["answer"]
|
311 |
|
312 |
def make_markdown_table(array):
|
@@ -323,9 +322,6 @@ def get_hr_files():
|
|
323 |
else:
|
324 |
return make_markdown_table(files)
|
325 |
|
326 |
-
def get_be_csv_files():
|
327 |
-
return make_markdown_table(glob.glob(root_file_path+believe_source_path+"/*.csv"))
|
328 |
-
|
329 |
def update_hr_km(files):
|
330 |
file_paths = [file.name for file in files]
|
331 |
dest_file_path=root_file_path+hr_source_path
|
@@ -339,20 +335,6 @@ def update_hr_km(files):
|
|
339 |
save_sqlite(sqlite_key, [Path(file_path).name for file_path in file_paths])
|
340 |
return get_hr_files()
|
341 |
|
342 |
-
def update_be_csv_km(files):
|
343 |
-
file_paths = [file.name for file in files]
|
344 |
-
dest_file_path=root_file_path+believe_source_path
|
345 |
-
if not os.path.exists(dest_file_path):
|
346 |
-
os.makedirs(dest_file_path)
|
347 |
-
|
348 |
-
for file in file_paths:
|
349 |
-
shutil.copy(file, dest_file_path)
|
350 |
-
|
351 |
-
if files == None:
|
352 |
-
return ''
|
353 |
-
else:
|
354 |
-
return make_markdown_table(files)
|
355 |
-
|
356 |
def clear_all_collection(collection_name):
|
357 |
pass
|
358 |
|
@@ -372,9 +354,6 @@ def clear_hr_datas():
|
|
372 |
delete_sql(sqlite_key)
|
373 |
return get_hr_files()
|
374 |
|
375 |
-
def clear_be_csv_datas():
|
376 |
-
all_files_under_diretory(root_file_path+believe_source_path)
|
377 |
-
|
378 |
def num_of_collection(collection_name):
|
379 |
client = get_chroma_client(collection_name)
|
380 |
number = client.get_collection(collection_name).count()
|
@@ -552,6 +531,7 @@ def kh_update_km(files):
|
|
552 |
|
553 |
return num_of_collection(tmp_collection)
|
554 |
|
|
|
555 |
class Logger:
|
556 |
def __init__(self, filename):
|
557 |
self.terminal = sys.stdout
|
@@ -568,6 +548,7 @@ class Logger:
|
|
568 |
def isatty(self):
|
569 |
return False
|
570 |
|
|
|
571 |
def read_logs():
|
572 |
sys.stdout.flush()
|
573 |
ansi_escape = re.compile(r'\x1B(?:[@-Z\\-_]|\[[0-?]*[ -/]*[@-~])')
|
@@ -575,33 +556,6 @@ def read_logs():
|
|
575 |
with open("output.log", "r", encoding='UTF-8') as f:
|
576 |
return ansi_escape.sub('', f.read())
|
577 |
|
578 |
-
def pandas_analysis(prompt_str, message, chat_history):
|
579 |
-
dir_path = f"{root_file_path}{believe_source_path}/*.csv"
|
580 |
-
res = glob.glob(dir_path)
|
581 |
-
df = pd.concat((pd.read_csv(f, encoding='unicode_escape') for f in res), ignore_index=True)
|
582 |
-
local_deploy_id= "text-davinci-003"
|
583 |
-
local_model_name = "text-davinci-003"
|
584 |
-
llm = AzureOpenAI(
|
585 |
-
deployment_name=local_deploy_id,
|
586 |
-
model_name=local_model_name,
|
587 |
-
max_tokens=2000,
|
588 |
-
temperature=0,
|
589 |
-
)
|
590 |
-
|
591 |
-
be_agent = create_pandas_dataframe_agent(
|
592 |
-
llm,
|
593 |
-
df,
|
594 |
-
prefix="Remove any ` from the Action Input",
|
595 |
-
max_iterations=30,
|
596 |
-
return_intermediate_steps=False,
|
597 |
-
max_execution_time=60,
|
598 |
-
handle_parsing_errors="Check your output and make sure it conforms!",
|
599 |
-
verbose=True)
|
600 |
-
new_str = prompt_str.format(message=message, chat_history=chat_history)
|
601 |
-
print(new_str)
|
602 |
-
answer = be_agent.run(new_str)
|
603 |
-
chat_history.append((message, answer))
|
604 |
-
return '', chat_history
|
605 |
|
606 |
def lunch_style(demo, logs=gr.Text()):
|
607 |
sys.stdout = Logger("output.log")
|
@@ -626,6 +580,7 @@ def lunch_style(demo, logs=gr.Text()):
|
|
626 |
def gradio_run():
|
627 |
print("User Login")
|
628 |
with gr.Blocks(theme='bethecloud/storj_theme') as demo:
|
|
|
629 |
with gr.Row():
|
630 |
gr.Markdown("# HH Azure Openai Demo")
|
631 |
#Header section
|
@@ -718,7 +673,7 @@ def gradio_run():
|
|
718 |
cleanDataBtn = gr.Button(value="刪除所有知識以及檔案")
|
719 |
cleanDataBtn.click(clear_hr_datas,outputs=file_list)
|
720 |
|
721 |
-
with gr.Column(scale=
|
722 |
with gr.Row():
|
723 |
with gr.Column():
|
724 |
tmp_file = gr.File(LOOPING_TALKING_HEAD, visible=False)
|
@@ -733,10 +688,16 @@ def gradio_run():
|
|
733 |
audio_html = gr.HTML(htm_audio, visible=False)
|
734 |
with gr.Column():
|
735 |
isAudio = gr.Checkbox(label="是否要有語音", info="要開啟語音嗎?查詢時間會增長")
|
736 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
737 |
|
738 |
with gr.Row():
|
739 |
-
chatbot = gr.Chatbot(value=[], elem_id="chatbot").style(height=
|
740 |
with gr.Row():
|
741 |
with gr.Column(scale=5):
|
742 |
msg = gr.Textbox(
|
@@ -749,7 +710,6 @@ def gradio_run():
|
|
749 |
def respond(message, chat_history):
|
750 |
vector_search_message = local_vector_search(message, chat_history)
|
751 |
chat_history.append((message, vector_search_message))
|
752 |
-
print("vector_search:"+vector_search_message)
|
753 |
if isAudio.value is False:
|
754 |
print("isAudio is False")
|
755 |
return '', chat_history, htm_video, ''
|
@@ -776,17 +736,59 @@ def gradio_run():
|
|
776 |
with gr.Column(scale=1):
|
777 |
youtube_summary_textbox=gr.Textbox(interactive=False, label="AI 解析", lines=20)
|
778 |
youtube_analysis_btn.click(youtube_summary,youtube_link,youtube_summary_textbox)
|
779 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
780 |
with gr.Row():
|
781 |
gr.Markdown("""
|
782 |
### 使用方式
|
783 |
-
|
784 |
-
|
|
|
785 |
""")
|
786 |
-
|
|
|
787 |
with gr.Row():
|
788 |
with gr.Column():
|
789 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
790 |
with gr.Row():
|
791 |
with gr.Column(scale=5):
|
792 |
tmp_msg = gr.Textbox(show_label=False,placeholder="輸入你的問題",)
|
@@ -794,30 +796,30 @@ def gradio_run():
|
|
794 |
tmp_clear = gr.Button("清除對話")
|
795 |
with gr.Column():
|
796 |
prompt_textbox = gr.Textbox("""
|
797 |
-
|
798 |
有下列定義:
|
799 |
|
800 |
-
1.
|
801 |
|
802 |
請以中文回答我下面的問題:{message}
|
803 |
""", lines=10, label="Prompt:有{chat_history}及{message}, 請至少保留{message}變數",interactive=True, max_lines=10)
|
804 |
-
|
805 |
-
|
806 |
-
upload_button.upload(update_be_csv_km, inputs=upload_button, outputs=be_csv_file_list).then(get_be_csv_files,outputs=be_csv_file_list)
|
807 |
-
|
808 |
-
cleanDataBtn = gr.Button(value="刪除所有csv 資料")
|
809 |
-
cleanDataBtn.click(clear_be_csv_datas, outputs=be_csv_file_list).then(get_be_csv_files, outputs=be_csv_file_list)
|
810 |
-
tmp_msg.submit(pandas_analysis, [prompt_textbox, tmp_msg, tmp_chatbot], [tmp_msg, tmp_chatbot],queue=True)
|
811 |
tmp_clear.click(lambda: None, None, tmp_chatbot, queue=False)
|
812 |
with gr.Row():
|
813 |
gr.Examples([
|
814 |
-
'你有什麼欄位?'
|
|
|
|
|
|
|
815 |
], label="訊息範例", inputs=tmp_msg)
|
816 |
-
|
817 |
-
console = gr.Textbox(lines=11, label="Console", max_lines=11)
|
818 |
demo.queue(concurrency_count=10)
|
819 |
lunch_style(demo,console)
|
820 |
|
|
|
|
|
|
|
|
|
821 |
gradio_run()
|
822 |
|
823 |
-
|
|
|
59 |
#os env
|
60 |
os.environ["OPENAI_API_TYPE"] = "azure"
|
61 |
os.environ["OPENAI_API_VERSION"] = "2023-03-15-preview"
|
62 |
+
os.environ["OPENAI_API_BASE"] = "https://hh-azure-openai-poc.openai.azure.com/"
|
63 |
+
os.environ["OPENAI_API_KEY"] = "41dd3ccda6a2489db375f3fe2a440953"
|
64 |
os.environ["SERPAPI_API_KEY"] = "a5b67b8805b4e12b0ae147c9c6b2a7dbf3ab84fca5f24e531b6963b1f7fc1ff7"
|
65 |
|
66 |
+
global_deployment_id = "gpt-35-turbo-16k"
|
67 |
+
global_model_name = "gpt-35-turbo-16k"
|
68 |
|
69 |
#chroma settings
|
70 |
chroma_api_impl = "HH_Azure_Openai"
|
71 |
+
#root_file_path = "C:\\Users\\catsk\\SourceCode\\azure_openai_poc\\data\\"
|
72 |
root_file_path = "./data/" #其實是data 存放的位置
|
73 |
hr_source_path = "hr_source"
|
74 |
ks_source_path = "ks_source"
|
|
|
80 |
hr_collection_name = "hr_db"
|
81 |
chroma_db_impl="localdb+langchain"
|
82 |
tmp_collection="tmp_collection"
|
|
|
83 |
|
84 |
#global text setting
|
85 |
inputText = "問題(按q 或Ctrl + c跳出): "
|
|
|
124 |
return OpenAIEmbeddings(
|
125 |
deployment="CivetGPT_embedding",
|
126 |
model="text-embedding-ada-002",
|
127 |
+
openai_api_base="https://civet-project-001.openai.azure.com/",
|
128 |
+
openai_api_type="azure",
|
129 |
+
openai_api_key = "0e3e5b666818488fa1b5cb4e4238ffa7",
|
130 |
chunk_size=1
|
131 |
)
|
132 |
|
|
|
265 |
chat_llm = AzureChatOpenAI(
|
266 |
deployment_name = global_deployment_id,
|
267 |
model_name= global_model_name,
|
268 |
+
temperature = 0.0)
|
269 |
+
|
270 |
|
271 |
prompt = PromptTemplate(
|
272 |
template=get_prompt_template_string(),
|
|
|
292 |
description='Useful for when you need to answer questions about math.'
|
293 |
)
|
294 |
|
295 |
+
tools=[math_tool,km_tool]
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
agent=initialize_agent(
|
297 |
+
agent=AgentType.OPENAI_FUNCTIONS,
|
298 |
tools=tools,
|
299 |
llm=chat_llm,
|
300 |
verbose=True,
|
301 |
memory=memory,
|
302 |
max_iterations=30,
|
303 |
)
|
304 |
+
print("query string:"+question_str)
|
305 |
|
306 |
+
result=km_chain(question_str)
|
307 |
#result=agent.run(question_str)
|
308 |
+
print(result)
|
309 |
return result["answer"]
|
310 |
|
311 |
def make_markdown_table(array):
|
|
|
322 |
else:
|
323 |
return make_markdown_table(files)
|
324 |
|
|
|
|
|
|
|
325 |
def update_hr_km(files):
|
326 |
file_paths = [file.name for file in files]
|
327 |
dest_file_path=root_file_path+hr_source_path
|
|
|
335 |
save_sqlite(sqlite_key, [Path(file_path).name for file_path in file_paths])
|
336 |
return get_hr_files()
|
337 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
def clear_all_collection(collection_name):
|
339 |
pass
|
340 |
|
|
|
354 |
delete_sql(sqlite_key)
|
355 |
return get_hr_files()
|
356 |
|
|
|
|
|
|
|
357 |
def num_of_collection(collection_name):
|
358 |
client = get_chroma_client(collection_name)
|
359 |
number = client.get_collection(collection_name).count()
|
|
|
531 |
|
532 |
return num_of_collection(tmp_collection)
|
533 |
|
534 |
+
|
535 |
class Logger:
|
536 |
def __init__(self, filename):
|
537 |
self.terminal = sys.stdout
|
|
|
548 |
def isatty(self):
|
549 |
return False
|
550 |
|
551 |
+
|
552 |
def read_logs():
|
553 |
sys.stdout.flush()
|
554 |
ansi_escape = re.compile(r'\x1B(?:[@-Z\\-_]|\[[0-?]*[ -/]*[@-~])')
|
|
|
556 |
with open("output.log", "r", encoding='UTF-8') as f:
|
557 |
return ansi_escape.sub('', f.read())
|
558 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
559 |
|
560 |
def lunch_style(demo, logs=gr.Text()):
|
561 |
sys.stdout = Logger("output.log")
|
|
|
580 |
def gradio_run():
|
581 |
print("User Login")
|
582 |
with gr.Blocks(theme='bethecloud/storj_theme') as demo:
|
583 |
+
|
584 |
with gr.Row():
|
585 |
gr.Markdown("# HH Azure Openai Demo")
|
586 |
#Header section
|
|
|
673 |
cleanDataBtn = gr.Button(value="刪除所有知識以及檔案")
|
674 |
cleanDataBtn.click(clear_hr_datas,outputs=file_list)
|
675 |
|
676 |
+
with gr.Column(scale=3):
|
677 |
with gr.Row():
|
678 |
with gr.Column():
|
679 |
tmp_file = gr.File(LOOPING_TALKING_HEAD, visible=False)
|
|
|
688 |
audio_html = gr.HTML(htm_audio, visible=False)
|
689 |
with gr.Column():
|
690 |
isAudio = gr.Checkbox(label="是否要有語音", info="要開啟語音嗎?查詢時間會增長")
|
691 |
+
gr.Markdown("""
|
692 |
+
### AI 虛擬客服:
|
693 |
+
* 這是一個實驗性質的AI 客服
|
694 |
+
* 講話超過15秒就不會產生,正在要求放寬限制
|
695 |
+
* 想要放誰的頭像都可以, 要放董事長也可以.
|
696 |
+
* 訂閱制(有效時間 6/13~7/13)
|
697 |
+
""")
|
698 |
|
699 |
with gr.Row():
|
700 |
+
chatbot = gr.Chatbot(value=[], elem_id="chatbot").style(height=400)
|
701 |
with gr.Row():
|
702 |
with gr.Column(scale=5):
|
703 |
msg = gr.Textbox(
|
|
|
710 |
def respond(message, chat_history):
|
711 |
vector_search_message = local_vector_search(message, chat_history)
|
712 |
chat_history.append((message, vector_search_message))
|
|
|
713 |
if isAudio.value is False:
|
714 |
print("isAudio is False")
|
715 |
return '', chat_history, htm_video, ''
|
|
|
736 |
with gr.Column(scale=1):
|
737 |
youtube_summary_textbox=gr.Textbox(interactive=False, label="AI 解析", lines=20)
|
738 |
youtube_analysis_btn.click(youtube_summary,youtube_link,youtube_summary_textbox)
|
739 |
+
|
740 |
+
with gr.Tab("相信人員統計助手"):
|
741 |
+
|
742 |
+
mypath = root_file_path + believe_source_path
|
743 |
+
onlyfiles = os.listdir(mypath)
|
744 |
+
df = pd.concat((pd.read_csv(os.path.join(mypath, filename),encoding = "ISO-8859-1") for filename in onlyfiles))
|
745 |
+
|
746 |
with gr.Row():
|
747 |
gr.Markdown("""
|
748 |
### 使用方式
|
749 |
+
資料裡有 `相信` 的active user 資料,
|
750 |
+
右方己經有先算出平均每個問題花費多少, 隨意詢問算法AI 即可算出多少費用.
|
751 |
+
若要改費用, 請在右方prompt 更改數字
|
752 |
""")
|
753 |
+
invField = gr.Textbox(visible=False)
|
754 |
+
gr.Examples(onlyfiles, label="資料庫檔案", inputs=invField, examples_per_page=4)
|
755 |
with gr.Row():
|
756 |
with gr.Column():
|
757 |
+
llm = AzureOpenAI(
|
758 |
+
deployment_name=global_deployment_id,
|
759 |
+
model_name=global_model_name,
|
760 |
+
max_tokens=2000,
|
761 |
+
temperature=0,
|
762 |
+
)
|
763 |
+
be_agent = create_pandas_dataframe_agent(
|
764 |
+
llm,
|
765 |
+
df,
|
766 |
+
max_iterations=30,
|
767 |
+
return_intermediate_steps=False,
|
768 |
+
max_execution_time=60,
|
769 |
+
handle_parsing_errors="Check your output and make sure it conforms!",
|
770 |
+
verbose=True)
|
771 |
+
def tmp_respond(prompt_str, message, chat_history):
|
772 |
+
new_str = prompt_str.format(message=message, chat_history=chat_history)
|
773 |
+
answer = be_agent.run(new_str)
|
774 |
+
chat_history.append((message, answer))
|
775 |
+
"""
|
776 |
+
try:
|
777 |
+
new_str = prompt_str.format(message=message, chat_history=chat_history)
|
778 |
+
answer = be_agent.run(new_str)
|
779 |
+
chat_history.append((message, answer))
|
780 |
+
except Exception as e:
|
781 |
+
response = str(e)
|
782 |
+
print(f"Got error!{response}")
|
783 |
+
if not response.startswith("Could not parse LLM output: `"):
|
784 |
+
raise e
|
785 |
+
answer = response.removeprefix("Could not parse LLM output: `").removesuffix("`")
|
786 |
+
print("answer:"+answer)
|
787 |
+
chat_history.append((message, answer))
|
788 |
+
"""
|
789 |
+
return '', chat_history
|
790 |
+
|
791 |
+
tmp_chatbot = gr.Chatbot(value=[], elem_id="tmp_chatbot").style(height=500)
|
792 |
with gr.Row():
|
793 |
with gr.Column(scale=5):
|
794 |
tmp_msg = gr.Textbox(show_label=False,placeholder="輸入你的問題",)
|
|
|
796 |
tmp_clear = gr.Button("清除對話")
|
797 |
with gr.Column():
|
798 |
prompt_textbox = gr.Textbox("""
|
799 |
+
你是一位專業資料科學家,提供給你的是研究列表.
|
800 |
有下列定義:
|
801 |
|
802 |
+
1.Title是研究報告的標題
|
803 |
|
804 |
請以中文回答我下面的問題:{message}
|
805 |
""", lines=10, label="Prompt:有{chat_history}及{message}, 請至少保留{message}變數",interactive=True, max_lines=10)
|
806 |
+
console = gr.Textbox(lines=11, label="Console", max_lines=11)
|
807 |
+
tmp_msg.submit(tmp_respond, [prompt_textbox, tmp_msg, tmp_chatbot], [tmp_msg, tmp_chatbot],queue=True)
|
|
|
|
|
|
|
|
|
|
|
808 |
tmp_clear.click(lambda: None, None, tmp_chatbot, queue=False)
|
809 |
with gr.Row():
|
810 |
gr.Examples([
|
811 |
+
'你有什麼欄位?',
|
812 |
+
'資料裡有屬於台灣(TW)的員工有多少位?',
|
813 |
+
'全台灣的員工, 每人每天問五個問題, 1個月花費多少錢?',
|
814 |
+
'如果龍華廠區的員工每人每天問3個問題,台灣員工每人每天問7個問題, 請問這樣一個月多少錢?'
|
815 |
], label="訊息範例", inputs=tmp_msg)
|
816 |
+
|
|
|
817 |
demo.queue(concurrency_count=10)
|
818 |
lunch_style(demo,console)
|
819 |
|
820 |
+
def test():
|
821 |
+
mypath = "C:\\Users\\catsk\\SourceCode\\azure_openai_poc\\data\\ks_source_files"
|
822 |
+
onlyfiles = [f for f in listdir(mypath) if isfile(join(mypath, f))]
|
823 |
+
print(onlyfiles)
|
824 |
gradio_run()
|
825 |
|
|