Spaces:
Runtime error
Runtime error
YanshekWoo
commited on
Commit
•
a1a2817
1
Parent(s):
d18f655
ADD title & description
Browse files
app.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
|
4 |
from transformers import BertTokenizer, BartForConditionalGeneration
|
5 |
|
6 |
title = "HIT-TMG/dialogue-bart-large-chinese"
|
@@ -9,8 +8,6 @@ This is a seq2seq model fine-tuned on several Chinese dialogue datasets, from ba
|
|
9 |
See some details of model card at https://huggingface.co/HIT-TMG/dialogue-bart-large-chinese .
|
10 |
"""
|
11 |
|
12 |
-
# Input example: 可以 认识 一下 吗 ?[SEP]当然 可以 啦 , 你好 。[SEP]嘿嘿 你好 , 请问 你 最近 在 忙 什么 呢 ?[SEP]我 最近 养 了 一只 狗狗 , 我 在 训练 它 呢 。
|
13 |
-
|
14 |
tokenizer = BertTokenizer.from_pretrained("HIT-TMG/dialogue-bart-large-chinese")
|
15 |
model = BartForConditionalGeneration.from_pretrained("HIT-TMG/dialogue-bart-large-chinese")
|
16 |
|
@@ -18,36 +15,6 @@ tokenizer.truncation_side = 'left'
|
|
18 |
max_length = 512
|
19 |
|
20 |
|
21 |
-
# def chat(history):
|
22 |
-
# history_prefix = "对话历史:"
|
23 |
-
# history = history_prefix + history
|
24 |
-
#
|
25 |
-
# outputs = tokenizer(history,
|
26 |
-
# return_tensors='pt',
|
27 |
-
# padding=True,
|
28 |
-
# truncation=True,
|
29 |
-
# max_length=512)
|
30 |
-
#
|
31 |
-
# input_ids = outputs.input_ids
|
32 |
-
# output_ids = model.generate(input_ids)[0]
|
33 |
-
#
|
34 |
-
# return tokenizer.decode(output_ids, skip_special_tokens=True)
|
35 |
-
#
|
36 |
-
#
|
37 |
-
# chatbot = gr.Chatbot().style(color_map=("green", "pink"))
|
38 |
-
# demo = gr.Interface(
|
39 |
-
# chat,
|
40 |
-
# inputs=gr.Textbox(lines=8, placeholder="输入你的对话历史(请以'[SEP]'作为每段对话的间隔)\nInput the dialogue history (Please split utterances by '[SEP]')"),
|
41 |
-
# title=title,
|
42 |
-
# description=description,
|
43 |
-
# outputs =["text"]
|
44 |
-
# )
|
45 |
-
#
|
46 |
-
#
|
47 |
-
# if __name__ == "__main__":
|
48 |
-
# demo.launch()
|
49 |
-
|
50 |
-
|
51 |
def chat_func(input_utterance, history: Optional[List[str]] = None):
|
52 |
if history is not None:
|
53 |
history.append(input_utterance)
|
@@ -66,21 +33,47 @@ def chat_func(input_utterance, history: Optional[List[str]] = None):
|
|
66 |
|
67 |
history.append(response)
|
68 |
|
69 |
-
# # convert the tokens to text, and then split the responses into lines
|
70 |
-
# response = tokenizer.decode(history[0]).split("<|endoftext|>")
|
71 |
-
# # print('decoded_response-->>'+str(response))
|
72 |
-
# response = [(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)] # convert to tuples of list
|
73 |
-
# # print('response-->>'+str(response))
|
74 |
-
|
75 |
display_utterances = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)]
|
76 |
|
77 |
return display_utterances, history
|
78 |
|
79 |
|
80 |
demo = gr.Interface(fn=chat_func,
|
81 |
-
|
|
|
|
|
82 |
outputs=["chatbot", "state"])
|
83 |
|
84 |
|
85 |
if __name__ == "__main__":
|
86 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from typing import List, Optional
|
|
|
3 |
from transformers import BertTokenizer, BartForConditionalGeneration
|
4 |
|
5 |
title = "HIT-TMG/dialogue-bart-large-chinese"
|
|
|
8 |
See some details of model card at https://huggingface.co/HIT-TMG/dialogue-bart-large-chinese .
|
9 |
"""
|
10 |
|
|
|
|
|
11 |
tokenizer = BertTokenizer.from_pretrained("HIT-TMG/dialogue-bart-large-chinese")
|
12 |
model = BartForConditionalGeneration.from_pretrained("HIT-TMG/dialogue-bart-large-chinese")
|
13 |
|
|
|
15 |
max_length = 512
|
16 |
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def chat_func(input_utterance, history: Optional[List[str]] = None):
|
19 |
if history is not None:
|
20 |
history.append(input_utterance)
|
|
|
33 |
|
34 |
history.append(response)
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
display_utterances = [(history[i], history[i + 1]) for i in range(0, len(history) - 1, 2)]
|
37 |
|
38 |
return display_utterances, history
|
39 |
|
40 |
|
41 |
demo = gr.Interface(fn=chat_func,
|
42 |
+
title=title,
|
43 |
+
description=description,
|
44 |
+
inputs=[gr.Textbox(lines=1, placeholder="Input current utterance"), "state"],
|
45 |
outputs=["chatbot", "state"])
|
46 |
|
47 |
|
48 |
if __name__ == "__main__":
|
49 |
demo.launch()
|
50 |
+
|
51 |
+
|
52 |
+
# def chat(history):
|
53 |
+
# history_prefix = "对话历史:"
|
54 |
+
# history = history_prefix + history
|
55 |
+
#
|
56 |
+
# outputs = tokenizer(history,
|
57 |
+
# return_tensors='pt',
|
58 |
+
# padding=True,
|
59 |
+
# truncation=True,
|
60 |
+
# max_length=512)
|
61 |
+
#
|
62 |
+
# input_ids = outputs.input_ids
|
63 |
+
# output_ids = model.generate(input_ids)[0]
|
64 |
+
#
|
65 |
+
# return tokenizer.decode(output_ids, skip_special_tokens=True)
|
66 |
+
#
|
67 |
+
#
|
68 |
+
# chatbot = gr.Chatbot().style(color_map=("green", "pink"))
|
69 |
+
# demo = gr.Interface(
|
70 |
+
# chat,
|
71 |
+
# inputs=gr.Textbox(lines=8, placeholder="输入你的对话历史(请以'[SEP]'作为每段对话的间隔)\nInput the dialogue history (Please split utterances by '[SEP]')"),
|
72 |
+
# title=title,
|
73 |
+
# description=description,
|
74 |
+
# outputs =["text"]
|
75 |
+
# )
|
76 |
+
#
|
77 |
+
#
|
78 |
+
# if __name__ == "__main__":
|
79 |
+
# demo.launch()
|