moss / finetune_moss.py
HMinions's picture
Upload 14 files
7ad9c80
"""Code for moss-moon-003-sft"""
import os
import copy
import json
import torch
import logging
import argparse
from tqdm import tqdm
import torch.distributed as dist
from torch.utils.data import Dataset, DataLoader
from torch.utils.tensorboard import SummaryWriter
from accelerate import Accelerator, DeepSpeedPlugin
from transformers import set_seed, get_cosine_schedule_with_warmup
from models.modeling_moss import MossForCausalLM
from models.tokenization_moss import MossTokenizer
logger = logging.getLogger(__name__)
logging.basicConfig(level='INFO')
class SFTDataset(Dataset):
def __init__(self, data_dir, tokenizer, data_type='train'):
super().__init__()
self.data_dir = data_dir
self.tokenizer = tokenizer
self.data_type = data_type
self.data = []
# We do not calculate losses for the meta instruction or results returned by plugins
# The token spans with label -100, [(span_start, span_end), ...]
self.no_loss_spans = []
self.load_data()
def load_data(self):
logger.info("Loading data...")
data_file = os.path.join(self.data_dir, f'{self.data_type}_data')
no_loss_spans_file = os.path.join(self.data_dir, f'{self.data_type}_no_loss_spans')
if os.path.exists(data_file) and os.path.exists(no_loss_spans_file):
self.data = torch.load(data_file, map_location='cpu')
self.no_loss_spans = torch.load(no_loss_spans_file, map_location='cpu')
else:
with open(os.path.join(self.data_dir, f'{self.data_type}.jsonl'), 'r') as f:
for line in f:
sample = json.loads(line)
chat = sample['chat']
num_turns = int(sample['num_turns'])
meta_instruction = sample['meta_instruction']
instruction_ids = self.tokenizer.encode(meta_instruction)
assert isinstance(instruction_ids, list) and len(instruction_ids) > 0
input_ids = copy.deepcopy(instruction_ids)
no_loss_spans = [(0, len(instruction_ids))]
for i in range(num_turns):
cur_turn_ids = []
cur_no_loss_spans = []
cur_turn = chat[f'turn_{i+1}']
for key, value in cur_turn.items():
cur_ids = self.tokenizer.encode(value)
if key == 'Tool Responses':
# The format tokens (<|Results|>:...<eor>\n) should have losses.
cur_no_loss_spans.append((len(input_ids + cur_turn_ids) + 5, len(input_ids + cur_turn_ids + cur_ids) - 2))
assert isinstance(cur_ids, list) and len(cur_ids) > 0
cur_turn_ids.extend(cur_ids)
if len(input_ids + cur_turn_ids) > 2048:
break
input_ids.extend(cur_turn_ids)
no_loss_spans.extend(cur_no_loss_spans)
if len(input_ids) == len(instruction_ids):
continue
assert len(input_ids) > 0 and len(input_ids) <= 2048
self.data.append(input_ids)
self.no_loss_spans.append(no_loss_spans)
torch.save(self.data, data_file)
torch.save(self.no_loss_spans, no_loss_spans_file)
logger.info(f"Load data successfully, total {len(self.data)} training samples")
def __len__(self):
return len(self.data)
def __getitem__(self, index):
data = copy.deepcopy(self.data[index])
no_loss_spans = copy.deepcopy(self.no_loss_spans[index])
data = torch.tensor(data, dtype=torch.long)
attn_mask = torch.ones_like(data, dtype=torch.bool)
label = copy.deepcopy(data)
for no_loss_span in no_loss_spans:
label[no_loss_span[0] : no_loss_span[1]] = -100
return data, attn_mask, label
def collate_fn(self, batch):
batch_input_ids, batch_attn_mask, batch_labels = [], [], []
for input_ids, attn_mask, label in batch:
batch_input_ids.append(input_ids)
batch_attn_mask.append(attn_mask)
batch_labels.append(label)
batch_input_ids = torch.nn.utils.rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=self.tokenizer.eos_token_id)
batch_attn_mask = torch.nn.utils.rnn.pad_sequence(batch_input_ids, batch_first=True, padding_value=0).to(torch.bool)
batch_labels = torch.nn.utils.rnn.pad_sequence(batch_labels, batch_first=True, padding_value=-100)
return batch_input_ids, batch_attn_mask, batch_labels
class SFTMetric:
def __init__(self, device):
self.n_step = 0
self.right = torch.Tensor([0]).to(device=device)
self.total = torch.Tensor([0]).to(device=device)
self.total_loss = torch.Tensor([0]).to(device=device)
self.world_size = dist.get_world_size()
def __call__(self, logits, labels, loss):
return self.update(logits, labels, loss)
def update(self, logits, labels, loss):
self.n_step += 1
with torch.no_grad():
shift_preds = logits[..., :-1, :].argmax(dim=-1)
shift_labels = labels[..., 1:]
self.right += (shift_preds == shift_labels).masked_fill(shift_labels.eq(-100), 0).sum().item()
self.total += (shift_labels != -100).sum().item()
self.total_loss += loss.item()
def get_metric(self, reset=True):
dist.all_reduce(self.right, op=torch.distributed.ReduceOp.SUM)
dist.all_reduce(self.total, op=torch.distributed.ReduceOp.SUM)
dist.all_reduce(self.total_loss, op=torch.distributed.ReduceOp.SUM)
acc = (self.right / self.total).item()
loss = self.total_loss.item() / (self.world_size * self.n_step)
if reset:
self.n_step = 0
self.right.fill_(0)
self.total.fill_(0)
self.total_loss.fill_(0)
return acc, loss
def train(args):
# deepspeed needs to know your gradient accumulation steps before hand, so don't forget to pass it
# Remember you still need to do gradient accumulation by yourself, just like you would have done without deepspeed
# deepspeed_plugin = DeepSpeedPlugin(zero_stage=3, gradient_accumulation_steps=1)
# deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = 2
accelerator = Accelerator(mixed_precision='fp16')
if accelerator.is_main_process:
writer = SummaryWriter(args.log_dir)
writer.add_hparams(vars(args), {})
accelerator.state.deepspeed_plugin.deepspeed_config['train_micro_batch_size_per_gpu'] = args.train_bsz_per_gpu
tokenizer = MossTokenizer.from_pretrained(args.model_path)
model = MossForCausalLM.from_pretrained(args.model_path, use_cache=False)
model.transformer.gradient_checkpointing = True
assert model.transformer.gradient_checkpointing is True
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
train_dataset = SFTDataset(args.data_dir, tokenizer)
train_dataloader = DataLoader(train_dataset, batch_size=args.train_bsz_per_gpu, shuffle=True, drop_last=True, collate_fn=train_dataset.collate_fn)
val_dataset = SFTDataset(args.data_dir, tokenizer, data_type='val')
val_dataloader = DataLoader(val_dataset, batch_size=args.eval_bsz_per_gpu, shuffle=False, drop_last=True, collate_fn=train_dataset.collate_fn)
num_training_steps = (len(train_dataloader) * args.n_epochs) // accelerator.gradient_accumulation_steps
lr_scheduler = get_cosine_schedule_with_warmup(optimizer, num_warmup_steps=int(args.warmup_rates * num_training_steps), num_training_steps=num_training_steps)
model, optimizer, train_dataloader, val_dataloader, lr_scheduler = accelerator.prepare(model, optimizer, train_dataloader, val_dataloader, lr_scheduler)
global_step = 0
metric = SFTMetric(device=torch.cuda.current_device())
model.train()
for epoch in range(args.n_epochs):
for batch_cnt, (input_ids, attention_mask, labels) in enumerate(train_dataloader):
if batch_cnt == 1 and epoch == 0:
torch.cuda.empty_cache()
optimizer.zero_grad()
output = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, return_dict=True)
loss = output.loss
metric(output.logits, labels, loss)
acc, train_loss = metric.get_metric()
accelerator.backward(loss)
optimizer.step()
if not accelerator.optimizer_step_was_skipped:
lr_scheduler.step()
global_step += 1
if accelerator.is_main_process:
accelerator.print(f"epoch: {epoch}, cureent step: {batch_cnt}, total step: {len(train_dataloader)}, skip:{accelerator.optimizer_step_was_skipped}, loss:{round(train_loss, 3)}, acc:{round(acc, 3)}, length:{len(input_ids[0])}, lr:{lr_scheduler.get_last_lr()[0]}")
if global_step % 3 == 0 and accelerator.is_main_process:
writer.add_scalar('skip', int(accelerator.optimizer_step_was_skipped), global_step=global_step)
writer.add_scalar('loss', train_loss, global_step=global_step)
writer.add_scalar('acc', acc, global_step=global_step)
writer.add_scalar('lr', lr_scheduler.get_last_lr()[0], global_step=global_step)
if global_step % args.eval_step == 0 or global_step == 1:
torch.cuda.empty_cache()
model.eval()
val_metric = SFTMetric(torch.cuda.current_device())
for input_ids, attention_mask, labels in val_dataloader:
with torch.no_grad():
output = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels, return_dict=True)
val_metric(output.logits, labels, output.loss)
val_acc, val_loss = val_metric.get_metric()
if accelerator.is_main_process:
writer.add_scalar(f'val_loss', val_loss, global_step=global_step)
writer.add_scalar(f'val_acc', val_acc, global_step=global_step)
accelerator.print(f"Epoch: {epoch}, Step: {batch_cnt}, Val loss: {val_loss}, Val acc: {val_acc}")
model.train()
if global_step % args.save_step == 0:
model.save_checkpoint(args.output_dir, global_step)
if global_step % args.save_step != 0:
model.save_checkpoint(args.output_dir, global_step)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Args of sft')
# Model Args
parser.add_argument('--model_path', default='./ckpts/moss-16B-base', type=str)
# Data Args
parser.add_argument('--data_dir', default='./data/sft', type=str)
parser.add_argument('--output_dir', default='./ckpts/moss-16B-sft', type=str)
parser.add_argument('--log_dir', default='./train_logs/moss-16B-sft', type=str)
# Training Args
parser.add_argument('--max_seq_len', default=2048, type=int)
parser.add_argument('--train_bsz_per_gpu', default=4, type=int)
parser.add_argument('--eval_bsz_per_gpu', default=4, type=int)
parser.add_argument('--weight_decay', default=0.1, type=float)
parser.add_argument('--learning_rate', default=9e-6, type=float)
parser.add_argument('--warmup_rates', default=0.05, type=int)
parser.add_argument('--n_epochs', default=2, type=int)
# Other Args
parser.add_argument('--save_step', default=3000, type=int)
parser.add_argument('--eval_step', default=5, type=int)
parser.add_argument('--seed', default=42, type=int)
args = parser.parse_args()
os.makedirs(args.log_dir, exist_ok=True)
os.makedirs(args.output_dir, exist_ok=True)
set_seed(args.seed)
train(args)