Spaces:
Sleeping
Sleeping
import torch | |
from transformers import Trainer | |
class ContrastiveTrainer(Trainer): | |
def __init__(self, loss_func, is_vision_model, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
self.loss_func = loss_func | |
self.is_vision_model = is_vision_model | |
def compute_loss(self, model, inputs, return_outputs=False): | |
query_outputs = model(input_ids=inputs["query_input_ids"], attention_mask=inputs["query_attention_mask"]) | |
if self.is_vision_model: | |
if "doc_pixel_attention_mask" not in inputs: | |
doc_outputs = model( | |
input_ids=inputs["doc_input_ids"], | |
attention_mask=inputs["doc_attention_mask"], | |
pixel_values=inputs["doc_pixel_values"], | |
) | |
else: | |
doc_outputs = model( | |
input_ids=inputs["doc_input_ids"], | |
attention_mask=inputs["doc_attention_mask"], | |
pixel_values=inputs["doc_pixel_values"], | |
pixel_attention_mask=inputs["doc_pixel_attention_mask"], | |
) | |
else: | |
doc_outputs = model(input_ids=inputs["doc_input_ids"], attention_mask=inputs["doc_attention_mask"]) | |
loss = self.loss_func(query_outputs, doc_outputs) | |
return (loss, (query_outputs, doc_outputs)) if return_outputs else loss | |
def prediction_step(self, model, inputs, prediction_loss_only, ignore_keys=True): | |
"""This function is used to generate predictions and return the loss for the given inputs.""" | |
if not prediction_loss_only: | |
raise ValueError("prediction_step is only called with prediction_loss_only=True") | |
with torch.no_grad(): | |
if self.is_vision_model: | |
if "doc_pixel_attention_mask" not in inputs: | |
doc_outputs = model( | |
input_ids=inputs["doc_input_ids"], | |
attention_mask=inputs["doc_attention_mask"], | |
pixel_values=inputs["doc_pixel_values"], | |
) | |
else: | |
doc_outputs = model( | |
input_ids=inputs["doc_input_ids"], | |
attention_mask=inputs["doc_attention_mask"], | |
pixel_values=inputs["doc_pixel_values"], | |
pixel_attention_mask=inputs["doc_pixel_attention_mask"], | |
) | |
query_outputs = model( | |
input_ids=inputs["query_input_ids"], attention_mask=inputs["query_attention_mask"] | |
) | |
else: | |
query_outputs = model( | |
input_ids=inputs["query_input_ids"], attention_mask=inputs["query_attention_mask"] | |
) | |
doc_outputs = model(input_ids=inputs["doc_input_ids"], attention_mask=inputs["doc_attention_mask"]) | |
loss = self.loss_func(query_outputs, doc_outputs) | |
return loss, None, None | |