Spaces:
Sleeping
Sleeping
HUANG-Stephanie
commited on
Commit
•
33de980
1
Parent(s):
b6cdf0d
Update app.py
Browse files
app.py
CHANGED
@@ -1,22 +1,25 @@
|
|
|
|
1 |
import os
|
2 |
import sys
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), './colpali-main')))
|
5 |
|
6 |
-
import gradio as gr
|
7 |
-
import torch
|
8 |
from colpali_engine.models.paligemma_colbert_architecture import ColPali
|
9 |
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
|
10 |
from colpali_engine.utils.colpali_processing_utils import (
|
11 |
process_images,
|
12 |
process_queries,
|
13 |
)
|
14 |
-
|
15 |
-
|
16 |
-
from PIL import Image
|
17 |
-
from torch.utils.data import DataLoader
|
18 |
-
from tqdm import tqdm
|
19 |
-
from transformers import AutoProcessor
|
20 |
|
21 |
# Load model
|
22 |
model_name = "vidore/colpali"
|
@@ -31,88 +34,52 @@ if device != model.device:
|
|
31 |
model.to(device)
|
32 |
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
|
33 |
|
|
|
|
|
|
|
34 |
|
35 |
-
@
|
36 |
-
def
|
37 |
-
|
38 |
-
qs = []
|
39 |
-
with torch.no_grad():
|
40 |
-
batch_query = process_queries(processor, [query], mock_image)
|
41 |
-
batch_query = {k: v.to(device) for k, v in batch_query.items()}
|
42 |
-
embeddings_query = model(**batch_query)
|
43 |
-
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
44 |
-
|
45 |
-
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
|
46 |
-
scores = retriever_evaluator.evaluate(qs, ds)
|
47 |
-
|
48 |
-
top_k_indices = scores.argsort(axis=1)[0][-k:][::-1]
|
49 |
-
|
50 |
-
results = []
|
51 |
-
for idx in top_k_indices:
|
52 |
-
results.append((images[idx], f"Page {idx}"))
|
53 |
-
|
54 |
-
return results
|
55 |
-
|
56 |
-
|
57 |
-
@spaces.GPU
|
58 |
-
def index(files, ds):
|
59 |
-
"""Example script to run inference with ColPali"""
|
60 |
images = []
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
# run inference - docs
|
68 |
dataloader = DataLoader(
|
69 |
images,
|
70 |
batch_size=4,
|
71 |
shuffle=False,
|
72 |
collate_fn=lambda x: process_images(processor, x),
|
73 |
-
)
|
74 |
-
|
75 |
-
for batch_doc in tqdm(dataloader):
|
76 |
with torch.no_grad():
|
77 |
batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
|
78 |
embeddings_doc = model(**batch_doc)
|
79 |
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
def get_example():
|
84 |
-
return [[["climate_youth_magazine.pdf"], "How much tropical forest is cut annually ?"]]
|
85 |
-
|
86 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
87 |
-
gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models 📚")
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
imgs = gr.State(value=[])
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
query = gr.Textbox(placeholder="Enter your query here", label="Query")
|
102 |
-
k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=5)
|
103 |
|
104 |
-
|
105 |
-
# gr.Examples(
|
106 |
-
# examples=get_example(),
|
107 |
-
# inputs=[file, query],
|
108 |
-
# )
|
109 |
|
110 |
-
|
111 |
-
search_button = gr.Button("🔍 Search", variant="primary")
|
112 |
-
output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True)
|
113 |
|
114 |
-
|
115 |
-
search_button.click(search, inputs=[query, embeds, imgs, k], outputs=[output_gallery])
|
116 |
|
117 |
if __name__ == "__main__":
|
118 |
-
|
|
|
|
1 |
+
import io
|
2 |
import os
|
3 |
import sys
|
4 |
|
5 |
+
from fastapi import FastAPI, File, UploadFile
|
6 |
+
from typing import List
|
7 |
+
import torch
|
8 |
+
from pdf2image import convert_from_path
|
9 |
+
from PIL import Image
|
10 |
+
from torch.utils.data import DataLoader
|
11 |
+
from transformers import AutoProcessor
|
12 |
+
|
13 |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), './colpali-main')))
|
14 |
|
|
|
|
|
15 |
from colpali_engine.models.paligemma_colbert_architecture import ColPali
|
16 |
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
|
17 |
from colpali_engine.utils.colpali_processing_utils import (
|
18 |
process_images,
|
19 |
process_queries,
|
20 |
)
|
21 |
+
|
22 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Load model
|
25 |
model_name = "vidore/colpali"
|
|
|
34 |
model.to(device)
|
35 |
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
|
36 |
|
37 |
+
# In-memory storage
|
38 |
+
ds = []
|
39 |
+
images = []
|
40 |
|
41 |
+
@app.post("/index")
|
42 |
+
async def index(files: List[UploadFile] = File(...)):
|
43 |
+
global ds, images
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
images = []
|
45 |
+
ds = []
|
46 |
+
for file in files:
|
47 |
+
content = await file.read()
|
48 |
+
pdf_image_list = convert_from_path(io.BytesIO(content))
|
49 |
+
images.extend(pdf_image_list)
|
50 |
+
|
|
|
51 |
dataloader = DataLoader(
|
52 |
images,
|
53 |
batch_size=4,
|
54 |
shuffle=False,
|
55 |
collate_fn=lambda x: process_images(processor, x),
|
56 |
+
)
|
57 |
+
for batch_doc in dataloader:
|
|
|
58 |
with torch.no_grad():
|
59 |
batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
|
60 |
embeddings_doc = model(**batch_doc)
|
61 |
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
62 |
+
|
63 |
+
return {"message": f"Uploaded and converted {len(images)} pages"}
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
+
@app.post("/search")
|
66 |
+
async def search(query: str, k: int):
|
67 |
+
qs = []
|
68 |
+
with torch.no_grad():
|
69 |
+
batch_query = process_queries(processor, [query], mock_image)
|
70 |
+
batch_query = {k: v.to(device) for k, v in batch_query.items()}
|
71 |
+
embeddings_query = model(**batch_query)
|
72 |
+
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
|
|
73 |
|
74 |
+
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
|
75 |
+
scores = retriever_evaluator.evaluate(qs, ds)
|
|
|
|
|
76 |
|
77 |
+
top_k_indices = scores.argsort(axis=1)[0][-k:][::-1]
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
results = [{"page": idx, "image": "image_placeholder"} for idx in top_k_indices]
|
|
|
|
|
80 |
|
81 |
+
return {"results": results}
|
|
|
82 |
|
83 |
if __name__ == "__main__":
|
84 |
+
import uvicorn
|
85 |
+
uvicorn.run(app, host="0.0.0.0", port=8082, reload=True)
|