Spaces:
Sleeping
Sleeping
HUANG-Stephanie
commited on
Commit
•
d005da4
1
Parent(s):
7e4dcaf
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,13 @@ import sys
|
|
3 |
|
4 |
import gradio as gr
|
5 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
from pdf2image import convert_from_path
|
7 |
from PIL import Image
|
8 |
from torch.utils.data import DataLoader
|
@@ -11,11 +18,23 @@ from transformers import AutoProcessor
|
|
11 |
|
12 |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), './colpali-main')))
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def search(query: str, ds, images, k):
|
|
|
19 |
qs = []
|
20 |
with torch.no_grad():
|
21 |
batch_query = process_queries(processor, [query], mock_image)
|
@@ -23,7 +42,6 @@ def search(query: str, ds, images, k):
|
|
23 |
embeddings_query = model(**batch_query)
|
24 |
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
25 |
|
26 |
-
# run evaluation
|
27 |
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
|
28 |
scores = retriever_evaluator.evaluate(qs, ds)
|
29 |
|
@@ -36,19 +54,24 @@ def search(query: str, ds, images, k):
|
|
36 |
return results
|
37 |
|
38 |
|
39 |
-
|
|
|
40 |
"""Example script to run inference with ColPali"""
|
41 |
images = []
|
42 |
-
for f in
|
43 |
images.extend(convert_from_path(f))
|
44 |
|
|
|
|
|
|
|
45 |
# run inference - docs
|
46 |
dataloader = DataLoader(
|
47 |
images,
|
48 |
batch_size=4,
|
49 |
shuffle=False,
|
50 |
collate_fn=lambda x: process_images(processor, x),
|
51 |
-
)
|
|
|
52 |
for batch_doc in tqdm(dataloader):
|
53 |
with torch.no_grad():
|
54 |
batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
|
@@ -56,42 +79,41 @@ def index(file, ds):
|
|
56 |
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
57 |
return f"Uploaded and converted {len(images)} pages", ds, images
|
58 |
|
59 |
-
COLORS = ["#4285f4", "#db4437", "#f4b400", "#0f9d58", "#e48ef1"]
|
60 |
-
# Load model
|
61 |
-
model_name = "vidore/colpali"
|
62 |
-
token = os.environ.get("HF_TOKEN")
|
63 |
-
model = ColPali.from_pretrained(
|
64 |
-
"google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cpu", token=token
|
65 |
-
).eval()
|
66 |
-
model.load_adapter(model_name)
|
67 |
-
processor = AutoProcessor.from_pretrained(model_name, token=token)
|
68 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
69 |
-
if device != model.device:
|
70 |
-
model.to(device)
|
71 |
-
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
|
72 |
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
75 |
gr.Markdown("## 1️⃣ Upload PDFs")
|
76 |
-
file = gr.File(file_types=["pdf"], file_count="multiple")
|
77 |
|
78 |
-
gr.
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
imgs = gr.State(value=[])
|
83 |
|
84 |
-
|
85 |
-
|
|
|
|
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
output_img = gr.Image()
|
92 |
-
k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=5)
|
93 |
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
if __name__ == "__main__":
|
97 |
-
demo.queue(max_size=10).launch(debug=True)
|
|
|
3 |
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
+
from colpali_engine.models.paligemma_colbert_architecture import ColPali
|
7 |
+
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
|
8 |
+
from colpali_engine.utils.colpali_processing_utils import (
|
9 |
+
process_images,
|
10 |
+
process_queries,
|
11 |
+
)
|
12 |
+
import spaces
|
13 |
from pdf2image import convert_from_path
|
14 |
from PIL import Image
|
15 |
from torch.utils.data import DataLoader
|
|
|
18 |
|
19 |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), './colpali-main')))
|
20 |
|
21 |
+
# Load model
|
22 |
+
model_name = "vidore/colpali"
|
23 |
+
token = os.environ.get("HF_TOKEN")
|
24 |
+
model = ColPali.from_pretrained(
|
25 |
+
"google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cpu", token = token).eval()
|
26 |
|
27 |
+
model.load_adapter(model_name)
|
28 |
+
processor = AutoProcessor.from_pretrained(model_name, token = token)
|
29 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
30 |
+
if device != model.device:
|
31 |
+
model.to(device)
|
32 |
+
mock_image = Image.new("RGB", (448, 448), (255, 255, 255))
|
33 |
+
|
34 |
+
|
35 |
+
@spaces.GPU
|
36 |
def search(query: str, ds, images, k):
|
37 |
+
|
38 |
qs = []
|
39 |
with torch.no_grad():
|
40 |
batch_query = process_queries(processor, [query], mock_image)
|
|
|
42 |
embeddings_query = model(**batch_query)
|
43 |
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
|
44 |
|
|
|
45 |
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
|
46 |
scores = retriever_evaluator.evaluate(qs, ds)
|
47 |
|
|
|
54 |
return results
|
55 |
|
56 |
|
57 |
+
@spaces.GPU
|
58 |
+
def index(files, ds):
|
59 |
"""Example script to run inference with ColPali"""
|
60 |
images = []
|
61 |
+
for f in files:
|
62 |
images.extend(convert_from_path(f))
|
63 |
|
64 |
+
if len(images) >= 150:
|
65 |
+
raise gr.Error("The number of images in the dataset should be less than 150.")
|
66 |
+
|
67 |
# run inference - docs
|
68 |
dataloader = DataLoader(
|
69 |
images,
|
70 |
batch_size=4,
|
71 |
shuffle=False,
|
72 |
collate_fn=lambda x: process_images(processor, x),
|
73 |
+
)
|
74 |
+
|
75 |
for batch_doc in tqdm(dataloader):
|
76 |
with torch.no_grad():
|
77 |
batch_doc = {k: v.to(device) for k, v in batch_doc.items()}
|
|
|
79 |
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
|
80 |
return f"Uploaded and converted {len(images)} pages", ds, images
|
81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
def get_example():
|
84 |
+
return [[["climate_youth_magazine.pdf"], "How much tropical forest is cut annually ?"]]
|
85 |
+
|
86 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
87 |
+
gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models 📚")
|
88 |
gr.Markdown("## 1️⃣ Upload PDFs")
|
|
|
89 |
|
90 |
+
with gr.Row():
|
91 |
+
with gr.Column(scale=2):
|
92 |
+
gr.Markdown("## 1️⃣ Upload PDFs")
|
93 |
+
file = gr.File(file_types=["pdf"], file_count="multiple", label="Upload PDFs")
|
|
|
94 |
|
95 |
+
convert_button = gr.Button("🔄 Index documents")
|
96 |
+
message = gr.Textbox("Files not yet uploaded", label="Status")
|
97 |
+
embeds = gr.State(value=[])
|
98 |
+
imgs = gr.State(value=[])
|
99 |
|
100 |
+
with gr.Column(scale=3):
|
101 |
+
gr.Markdown("## 2️⃣ Search")
|
102 |
+
query = gr.Textbox(placeholder="Enter your query here", label="Query")
|
103 |
+
k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=5)
|
|
|
|
|
104 |
|
105 |
+
# with gr.Row():
|
106 |
+
# gr.Examples(
|
107 |
+
# examples=get_example(),
|
108 |
+
# inputs=[file, query],
|
109 |
+
# )
|
110 |
+
|
111 |
+
# Define the actions
|
112 |
+
search_button = gr.Button("🔍 Search", variant="primary")
|
113 |
+
output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True)
|
114 |
+
|
115 |
+
convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs])
|
116 |
+
search_button.click(search, inputs=[query, embeds, imgs, k], outputs=[output_gallery])
|
117 |
|
118 |
if __name__ == "__main__":
|
119 |
+
demo.queue(max_size=10).launch(debug=True)
|