Spaces:
Running
Running
File size: 4,232 Bytes
c2a02c6 8a2e1bf 48a30b6 754deb7 728e884 ec06c4b c8b993f 754deb7 0d7f3a7 b68774d 9abc2e6 c2a02c6 0052cfb 8a2e1bf 0052cfb c2a02c6 8a2e1bf c2a02c6 38ea622 ee0298f c241227 d39033d 38ea622 65d977a 38ea622 65d977a 0052cfb 65d977a 38ea622 65d977a c241227 65d977a 9e2f96b c8b993f 7b3fc5f c241227 806931d fa82089 0945bb1 8f90700 d9ba5a4 8f90700 efb78a7 8f90700 38ea622 9cffd28 0945bb1 da9bcac e52de1a d6a723e 0945bb1 e52de1a e3df29c 05e0ac4 e52de1a 0945bb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
import streamlit as st
import pandas as pd
from os import path
import sys
import streamlit.components.v1 as components
sys.path.append('code/')
import pdb_featureVector
import alphafold_featureVector
import argparse
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode,GridUpdateMode
import base64
from huggingface_hub import hf_hub_download
import streamlit as st
import gzip
showWarningOnDirectExecution = False
def convert_df(df):
return df.to_csv(index=False).encode('utf-8')
if 'visibility' not in st.session_state:
st.session_state['visibility'] = 'visible'
st.session_state.disabled = False
original_title = '<p style="font-family:Trebuchet MS; color:#000000; font-size: 25px; font-weight:bold; text-align:center">ASCARIS</p>'
st.markdown(original_title, unsafe_allow_html=True)
original_title = '<p style="font-family:Trebuchet MS; color:#000000; font-size: 25px; font-weight:bold; text-align:center">(Annotation and StruCture-bAsed RepresentatIon of Single amino acid variations)</p>'
st.markdown(original_title, unsafe_allow_html=True)
st.write('')
st.write('')
st.write('')
st.write('')
with st.form('mform', clear_on_submit=False):
source = st.selectbox('Select the protein structure resource (1: PDB-SwissModel-Modbase, 2: AlphaFold)',[1,2])
#source = 1
impute = st.selectbox('Missing value imputation (mostly for the cases where the corresponding annotation does not exist in the protein)',[True, False])
input_data = st.text_input('Enter SAV data points (format: "UniProt/Swiss-Prot human protein accession" – "wild type a.a." – "position on the sequence" – "mutated a.a."). Example: P04217-E-20-A or O43556-I-40-A,P57737-W-372-A')
parser = argparse.ArgumentParser(description='ASCARIS')
#parser.add_argument('-s', '--source_option',
# help='Selection of input structure data.\n 1: PDB Structures (default), 2: AlphaFold Structures',
# default=1)
#parser.add_argument('-i', '--input_datapoint',
# help='Input file or query datapoint\n Option 1: Comma-separated list of identifiers (UniProt ID-wt residue-position-mutated residue (e.g. Q9Y4W6-N-432-T or P41180-E-604-K, Q9Y4W6-N-432-T)) \n Option 2: Enter comma-separated file path')
#
#parser.add_argument('-impute', '--imputation_state', default='True',
# help='Whether resulting feature vector should be imputed or not. Default True.')
#args = parser.parse_args()
input_set = input_data
###mode = 1
impute = impute
submitted = st.form_submit_button(label="Submit", help=None, on_click=None, args=None, kwargs=None, type="secondary", disabled=False, use_container_width=False)
print('*****************************************')
print('Feature vector generation is in progress. \nPlease check log file for updates..')
print('*****************************************')
#mode = int(mode)
mode = int(source)
selected_df = pd.DataFrame()
st.write('The online tool may be slow, especially while processing multiple SAVs. To address this, please consider using the programmatic version at https://github.com/HUBioDataLab/ASCARIS/')
if submitted:
with st.spinner('In progress...This may take a while...'):
try:
if mode == 1:
# selected_df = pdb_featureVector.pdb(input_set, mode, impute)
pass
elif mode == 2:
selected_df = alphafold_featureVector.alphafold(input_set, mode, impute)
else:
selected_df = pd.DataFrame()
except:
selected_df = pd.DataFrame()
pass
if selected_df is None:
st.success('Feature vector failed. Check the log file.')
else:
if len(selected_df) != 0 :
st.write(selected_df)
st.success('Feature vector is successfully created.')
csv = convert_df(selected_df)
st.download_button("Press to Download the Feature Vector", csv,f"ASCARIS_SAV_rep_{input_set}.csv","text/csv",key='download-csv')
else:
st.success('Feature vector failed. Check the log file.')
|