Spaces:
Running
Running
Commit
·
a999cff
1
Parent(s):
50482d6
Create swissModelAdd.py
Browse files- code/swissModelAdd.py +209 -0
code/swissModelAdd.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
from pathlib import Path
|
4 |
+
import requests
|
5 |
+
from add_annotations import *
|
6 |
+
from utils import *
|
7 |
+
from add_annotations import *
|
8 |
+
from add_sasa import *
|
9 |
+
import streamlit as st
|
10 |
+
import json
|
11 |
+
|
12 |
+
UNIPROT_ANNOTATION_COLS = ['disulfide', 'intMet', 'intramembrane', 'naturalVariant', 'dnaBinding',
|
13 |
+
'activeSite',
|
14 |
+
'nucleotideBinding', 'lipidation', 'site', 'transmembrane',
|
15 |
+
'crosslink', 'mutagenesis', 'strand',
|
16 |
+
'helix', 'turn', 'metalBinding', 'repeat', 'topologicalDomain',
|
17 |
+
'caBinding', 'bindingSite', 'region',
|
18 |
+
'signalPeptide', 'modifiedResidue', 'zincFinger', 'motif',
|
19 |
+
'coiledCoil', 'peptide',
|
20 |
+
'transitPeptide', 'glycosylation', 'propeptide', 'disulfideBinary',
|
21 |
+
'intMetBinary', 'intramembraneBinary',
|
22 |
+
'naturalVariantBinary', 'dnaBindingBinary', 'activeSiteBinary',
|
23 |
+
'nucleotideBindingBinary', 'lipidationBinary', 'siteBinary',
|
24 |
+
'transmembraneBinary', 'crosslinkBinary', 'mutagenesisBinary',
|
25 |
+
'strandBinary', 'helixBinary', 'turnBinary', 'metalBindingBinary',
|
26 |
+
'repeatBinary', 'topologicalDomainBinary', 'caBindingBinary',
|
27 |
+
'bindingSiteBinary', 'regionBinary', 'signalPeptideBinary',
|
28 |
+
'modifiedResidueBinary', 'zincFingerBinary', 'motifBinary',
|
29 |
+
'coiledCoilBinary', 'peptideBinary', 'transitPeptideBinary',
|
30 |
+
'glycosylationBinary', 'propeptideBinary']
|
31 |
+
SIMPLE_COLS = ['uniprotID', 'wt', 'pos', 'mut', 'datapoint', 'composition', 'polarity',
|
32 |
+
'volume', 'granthamScore', 'domain', 'domStart', 'domEnd', 'distance',
|
33 |
+
'intMet', 'naturalVariant', 'activeSite', 'crosslink', 'mutagenesis',
|
34 |
+
'strand', 'helix', 'turn', 'region', 'modifiedResidue', 'motif',
|
35 |
+
'metalBinding', 'lipidation', 'glycosylation', 'topologicalDomain',
|
36 |
+
'nucleotideBinding', 'bindingSite', 'transmembrane', 'transitPeptide',
|
37 |
+
'repeat', 'site', 'peptide', 'signalPeptide', 'disulfide', 'coiledCoil',
|
38 |
+
'intramembrane', 'zincFinger', 'caBinding', 'propeptide', 'dnaBinding',
|
39 |
+
'disulfideBinary', 'intMetBinary', 'intramembraneBinary',
|
40 |
+
'naturalVariantBinary', 'dnaBindingBinary', 'activeSiteBinary',
|
41 |
+
'nucleotideBindingBinary', 'lipidationBinary', 'siteBinary',
|
42 |
+
'transmembraneBinary', 'crosslinkBinary', 'mutagenesisBinary',
|
43 |
+
'strandBinary', 'helixBinary', 'turnBinary', 'metalBindingBinary',
|
44 |
+
'repeatBinary', 'topologicalDomainBinary', 'caBindingBinary',
|
45 |
+
'bindingSiteBinary', 'regionBinary', 'signalPeptideBinary',
|
46 |
+
'modifiedResidueBinary', 'zincFingerBinary', 'motifBinary',
|
47 |
+
'coiledCoilBinary', 'peptideBinary', 'transitPeptideBinary',
|
48 |
+
'glycosylationBinary', 'propeptideBinary']
|
49 |
+
|
50 |
+
def addSwissModels(to_swiss, path_to_input_files, path_to_output_files):
|
51 |
+
'''
|
52 |
+
:param to_swiss:
|
53 |
+
:param path_to_input_files:
|
54 |
+
:param path_to_output_files:
|
55 |
+
:return: swissmodel dataframe with mapped SWISSMODEL information, dataframe that will be sent to modbase.
|
56 |
+
'''
|
57 |
+
|
58 |
+
print('\n>>> Proceeding to SwissModel search...')
|
59 |
+
print('------------------------------------\n')
|
60 |
+
|
61 |
+
if len(to_swiss) > 0:
|
62 |
+
print('\n>>> Generating SwissModel file...\n')
|
63 |
+
|
64 |
+
to_swiss.reset_index(drop=True, inplace=True)
|
65 |
+
to_swiss.fillna(np.NaN)
|
66 |
+
|
67 |
+
swiss_model = pd.read_csv(Path(path_to_input_files / 'swissmodel_structures.txt'),
|
68 |
+
sep='\t', dtype=str, header=None, skiprows=1,
|
69 |
+
names=['UniProtKB_ac', 'iso_id', 'uniprot_seq_length', 'uniprot_seq_md5',
|
70 |
+
'coordinate_id', 'provider', 'from', 'to', 'template', 'qmean_norm', 'seqid',
|
71 |
+
'url'])
|
72 |
+
swiss_model = swiss_model[swiss_model.UniProtKB_ac.isin(to_swiss.uniprotID.to_list())]
|
73 |
+
try:
|
74 |
+
swiss_model.iso_id = swiss_model.iso_id.astype('str')
|
75 |
+
except:
|
76 |
+
AttributeError
|
77 |
+
swiss_model['iso_id'] = np.NaN
|
78 |
+
for ind in swiss_model.index:
|
79 |
+
swiss_model.at[ind, 'UniProtKB_ac'] = swiss_model.at[ind, 'UniProtKB_ac'].split('-')[0]
|
80 |
+
swiss_model = swiss_model[swiss_model.provider == 'SWISSMODEL']
|
81 |
+
print('\n>>> Index File Processed...\n')
|
82 |
+
swiss_model = swiss_model[['UniProtKB_ac', 'from', 'to', 'template', 'qmean_norm', 'seqid', 'url']]
|
83 |
+
# Sort models on qmean score and identity. Some proteins have more than one models, we will pick one.
|
84 |
+
swiss_model = swiss_model.sort_values(by=['UniProtKB_ac', 'qmean_norm', 'seqid'], ascending=False)
|
85 |
+
swiss_model.reset_index(inplace=True, drop=True)
|
86 |
+
with_swiss_models = to_swiss[to_swiss.uniprotID.isin(swiss_model.UniProtKB_ac.to_list())]
|
87 |
+
no_swiss_models = to_swiss[~to_swiss.uniprotID.isin(swiss_model.UniProtKB_ac.to_list())]
|
88 |
+
if len(no_swiss_models) == 0:
|
89 |
+
no_swiss_models = pd.DataFrame(columns=to_swiss.columns)
|
90 |
+
else:
|
91 |
+
no_swiss_models.reset_index(drop=True, inplace= True)
|
92 |
+
|
93 |
+
swiss_models_with_data = pd.merge(with_swiss_models, swiss_model, left_on=['uniprotID'],
|
94 |
+
right_on=['UniProtKB_ac'], how='left')
|
95 |
+
|
96 |
+
swiss_models_with_data = swiss_models_with_data.sort_values(by=['uniprotID', 'wt','pos', 'qmean_norm'],
|
97 |
+
ascending=False)
|
98 |
+
|
99 |
+
swiss_models_with_data['pos'] = swiss_models_with_data['pos'] .apply(lambda x: int(x))
|
100 |
+
swiss_models_with_data['from'] = swiss_models_with_data['from'].apply(lambda x: int(x))
|
101 |
+
swiss_models_with_data['to'] = swiss_models_with_data['to'] .apply(lambda x: int(x))
|
102 |
+
|
103 |
+
notEncompassed = swiss_models_with_data[((swiss_models_with_data['pos'] > swiss_models_with_data['to']) | (swiss_models_with_data['pos'] < swiss_models_with_data['from']))]
|
104 |
+
swiss_models_with_data = swiss_models_with_data[(swiss_models_with_data['pos'] < swiss_models_with_data['to']) & (swiss_models_with_data['pos'] > swiss_models_with_data['from'])]
|
105 |
+
|
106 |
+
notEncompassed = notEncompassed[~notEncompassed.uniprotID.isin(swiss_models_with_data.uniprotID.to_list())]
|
107 |
+
swiss_models_with_data = swiss_models_with_data.drop(['UniProtKB_ac', 'seqid'], axis=1)
|
108 |
+
swiss_models_with_data = swiss_models_with_data[swiss_models_with_data.url != np.NaN]
|
109 |
+
url_nan = swiss_models_with_data[swiss_models_with_data.url == np.NaN]
|
110 |
+
url_nan = url_nan.drop(['from', 'qmean_norm', 'template', 'to', 'url'], axis=1)
|
111 |
+
|
112 |
+
|
113 |
+
no_swiss_models_updated = pd.concat([no_swiss_models, url_nan, notEncompassed])
|
114 |
+
if len(swiss_models_with_data)>0:
|
115 |
+
for i in swiss_models_with_data.index:
|
116 |
+
try:
|
117 |
+
swiss_models_with_data.at[i, 'chain'] = swiss_models_with_data.at[i, 'template'].split('.')[2]
|
118 |
+
swiss_models_with_data.at[i, 'template'] = swiss_models_with_data.at[i, 'template'].split('.')[0]
|
119 |
+
except IndexError:
|
120 |
+
swiss_models_with_data.at[i, 'chain'] = np.NaN
|
121 |
+
swiss_models_with_data.at[i, 'template'] = np.NaN
|
122 |
+
|
123 |
+
swiss_models_with_data.chain = swiss_models_with_data.chain.astype('str')
|
124 |
+
swiss_models_with_data['qmean_norm'] = swiss_models_with_data.qmean_norm.apply(lambda x: round(float(x), 2))
|
125 |
+
|
126 |
+
no_swiss_models_updated.reset_index(drop = True, inplace=True)
|
127 |
+
swiss_models_with_data.reset_index(drop=True, inplace=True)
|
128 |
+
|
129 |
+
existing_free_sasa = list(Path(path_to_output_files / 'freesasa_files').glob("*"))
|
130 |
+
existing_free_sasa = [str(i) for i in existing_free_sasa]
|
131 |
+
existing_free_sasa = [i.split('/')[-1].split('.')[0] for i in existing_free_sasa]
|
132 |
+
print('Beginning SwissModel files download...')
|
133 |
+
existing_swiss = list(Path(path_to_output_files / 'swissmodel_structures').glob("*"))
|
134 |
+
existing_swiss = [str(i) for i in existing_swiss]
|
135 |
+
existing_swiss = ['.'.join(i.split('/')[-1].split('.')[:-1]) for i in existing_swiss]
|
136 |
+
|
137 |
+
for i in swiss_models_with_data.index:
|
138 |
+
protein = swiss_models_with_data.at[i, 'uniprotID']
|
139 |
+
varPos = swiss_models_with_data.at[i, 'pos']
|
140 |
+
wt = swiss_models_with_data.at[i, 'wt']
|
141 |
+
template = swiss_models_with_data.at[i, 'template'].split('.')[0]
|
142 |
+
qmean_norm = str(round(float(swiss_models_with_data.at[i, 'qmean_norm']), 2))
|
143 |
+
|
144 |
+
swiss_models_with_data.at[i, 'coordVAR'] = np.NaN
|
145 |
+
swiss_models_with_data.at[i, 'coordinates'] = np.NaN
|
146 |
+
swiss_models_with_data.at[i, 'AAonPDB'] = np.NaN
|
147 |
+
varPos = swiss_models_with_data.at[i, 'pos']
|
148 |
+
AAonPDB = np.NaN
|
149 |
+
coordDict = {}
|
150 |
+
if protein + '_' + template + '_' + qmean_norm not in existing_swiss:
|
151 |
+
url = swiss_models_with_data.at[i, 'url'].strip('\"').strip('}').replace('\\', '').strip('\"')
|
152 |
+
req = requests.get(url)
|
153 |
+
name = Path(path_to_output_files / 'swissmodel_structures' / f'{protein}_{template}_{qmean_norm}.txt')
|
154 |
+
print('Downloading for Protein:', protein + ' Model: ' + template)
|
155 |
+
with open(name, 'wb') as f:
|
156 |
+
f.write(req.content)
|
157 |
+
else:
|
158 |
+
print(f'Model exists for {protein}.')
|
159 |
+
name = Path(path_to_output_files / 'swissmodel_structures' / f'{protein}_{template}_{qmean_norm}.txt')
|
160 |
+
|
161 |
+
swiss_dp = protein + '_' + template + '_' + qmean_norm
|
162 |
+
if swiss_dp not in existing_free_sasa:
|
163 |
+
|
164 |
+
(run_freesasa(Path(path_to_output_files / 'swissmodel_structures' / f'{swiss_dp}.txt'),
|
165 |
+
Path(path_to_output_files / 'freesasa_files' / f'{swiss_dp}.txt'), include_hetatms=True,
|
166 |
+
outdir=None, force_rerun=False, file_type='pdb'))
|
167 |
+
|
168 |
+
filename = Path(path_to_output_files / 'freesasa_files' / f'{swiss_dp}.txt')
|
169 |
+
|
170 |
+
swiss_models_with_data.at[i, 'sasa'] = sasa(protein, varPos, wt, 1, filename, path_to_output_files,
|
171 |
+
file_type='pdb')
|
172 |
+
with open(name, encoding="utf8") as f:
|
173 |
+
lines = f.readlines()
|
174 |
+
for row in lines:
|
175 |
+
if row[0:4] == 'ATOM' and row[13:15] == 'CA':
|
176 |
+
position = int(row[22:26].strip())
|
177 |
+
chain = row[20:22].strip()
|
178 |
+
aminoacid = threeToOne(row[17:20])
|
179 |
+
coords = [row[31:38].strip(), row[39:46].strip(), row[47:54].strip()]
|
180 |
+
coordDict[position] = coords
|
181 |
+
if int(position) == int(varPos):
|
182 |
+
AAonPDB = aminoacid
|
183 |
+
coordVAR = coords
|
184 |
+
if (row[0:3] == 'TER') or (row[0:3] == 'END'):
|
185 |
+
|
186 |
+
swiss_models_with_data.loc[i, 'coordinates'] = str(coordDict)
|
187 |
+
swiss_models_with_data.loc[i, 'AAonPDB'] = str(AAonPDB)
|
188 |
+
swiss_models_with_data.loc[i, 'coordVAR'] = str(coordVAR)
|
189 |
+
|
190 |
+
break
|
191 |
+
|
192 |
+
if swiss_models_with_data.at[i, 'AAonPDB'] == swiss_models_with_data.at[i, 'wt']:
|
193 |
+
swiss_models_with_data.at[i, 'PDB_ALIGN_STATUS'] = 'aligned'
|
194 |
+
else:
|
195 |
+
swiss_models_with_data.at[i, 'PDB_ALIGN_STATUS'] = 'notAligned'
|
196 |
+
swiss_models_with_data.sort_values(['uniprotID', 'wt', 'pos', 'mut', 'PDB_ALIGN_STATUS', 'qmean_norm'],
|
197 |
+
ascending=[True, True, True, True, True, False], inplace=True)
|
198 |
+
swiss_models_with_data.drop_duplicates(['uniprotID', 'wt', 'pos', 'mut'], keep='first', inplace=True)
|
199 |
+
obsolete = swiss_models_with_data[pd.isna(swiss_models_with_data.coordVAR)]
|
200 |
+
no_swiss_models_updated = pd.concat([no_swiss_models_updated, obsolete])
|
201 |
+
swiss_models_with_data = swiss_models_with_data.fillna(np.NaN)
|
202 |
+
else:
|
203 |
+
swiss_models_with_data = pd.DataFrame()
|
204 |
+
no_swiss_models_updated = pd.DataFrame()
|
205 |
+
|
206 |
+
no_swiss_models_updated = no_swiss_models_updated[SIMPLE_COLS]
|
207 |
+
return swiss_models_with_data, no_swiss_models_updated
|
208 |
+
|
209 |
+
|