Domain2GO / Domain2GO.py
Erva Ulusoy
update disclaimer
6dc4a0b
raw
history blame
7.79 kB
import streamlit as st
import streamlit.components.v1 as components
import requests
from io import StringIO
from Bio import SeqIO
import os
import time
import pandas as pd
from run_domain2go_app import *
def convert_df(df):
return df.to_csv(index=False).encode('utf-8')
with st.sidebar:
st.title("Domain2GO: Mutual Annotation-Based Prediction of Protein Domain Functions")
st.write("[![biorxiv](https://img.shields.io/badge/bioRxiv-2022.11.03.514980-b31b1b.svg)](https://www.biorxiv.org/content/10.1101/2022.11.03.514980v1) [![github-repository](https://img.shields.io/badge/GitHub-black?logo=github)](https://github.com/HUBioDataLab/Domain2GO)")
if 'example_seq_button' not in st.session_state:
st.session_state.example_seq_button = False
def click_button():
st.session_state.example_seq_button = not st.session_state.example_seq_button
input_type = st.radio('Select input type', ['Enter sequence', 'Upload FASTA file'])
if input_type == 'Enter sequence':
if st.session_state.example_seq_button:
st.session_state['sequence'] = st.text_area('Enter protein sequence in FASTA format.',
value='>sp|O18783|PLMN_NOTEU\n'
'MEYGKVIFLFLLFLKSGQGESLENYIKTEGASLSNSQKKQFVASSTEECEALCEKETEFVCRSFEHYNKEQKCVIMSENSKTSSVERKRDVVLFEKRIYLSDCKSGNGRNYRGTLSKTKSGITCQKWSDLSPHVPNYAPSKYPDAGLEKNYCRNPDDDVKGPWCYTTNPDIRYEYCDVPECEDECMHCSGENYRGTISKTESGIECQPWDSQEPHSHEYIPSKFPSKDLKENYCRNPDGEPRPWCFTSNPEKRWEFCNIPRCSSPPPPPGPMLQCLKGRGENYRGKIAVTKSGHTCQRWNKQTPHKHNRTPENFPCRGLDENYCRNPDGELEPWCYTTNPDVRQEYCAIPSCGTSSPHTDRVEQSPVIQECYEGKGENYRGTTSTTISGKKCQAWSSMTPHQHKKTPDNFPNADLIRNYCRNPDGDKSPWCYTMDPTVRWEFCNLEKCSGTGSTVLNAQTTRVPSVDTTSHPESDCMYGSGKDYRGKRSTTVTGTLCQAWTAQEPHRHTIFTPDTYPRAGLEENYCRNPDGDPNGPWCYTTNPKKLFDYCDIPQCVSPSSFDCGKPRVEPQKCPGRIVGGCYAQPHSWPWQISLRTRFGEHFCGGTLIAPQWVLTAAHCLERSQWPGAYKVILGLHREVNPESYSQEIGVSRLFKGPLAADIALLKLNRPAAINDKVIPACLPSQDFMVPDRTLCHVTGWGDTQGTSPRGLLKQASLPVIDNRVCNRHEYLNGRVKSTELCAGHLVGRGDSCQGDSGGPLICFEDDKYVLQGVTSWGLGCARPNKPGVYVRVSRYISWIEDVMKNN')
else:
st.session_state['sequence'] = st.text_input('Enter protein sequence in FASTA format.')
st.session_state['name'] = st.session_state['sequence'].split('\n')[0].strip('>')
st.button('Use example sequence', on_click=click_button)
else:
protein_input = st.file_uploader('Choose file')
if protein_input:
protein_input_stringio = StringIO(protein_input.getvalue().decode("utf-8"))
fasta_sequences = SeqIO.parse(protein_input_stringio, 'fasta')
for fasta in fasta_sequences:
st.session_state['name'], st.session_state['sequence'] = fasta.id, str(fasta.seq)
st.session_state['email'] = st.text_input('Enter your email for InterProScan query*: ')
st.markdown("""
<p style="color:#000000;font-size:12px;">*InterProScan requests your email to notify you when your job is done. Your email will not be used for any other purpose.</p>
""", unsafe_allow_html=True)
# prevent user from clicking submit button if email or sequence is empty
submitted = False
with st.sidebar:
if st.button('Predict functions'):
if 'email' in st.session_state and 'sequence' in st.session_state and '@' in st.session_state.email:
submitted = True
st.session_state.disabled = True
else:
with st.sidebar:
st.warning('Please enter your email and protein sequence first. If you have already entered your email and protein sequence, please check that your email is valid.')
if not submitted:
# on main page, write warning message if user has not submitted email and sequence
st.markdown("""
<div style="padding:30px">
<p style="color:#2a7b36;font-size:20px;">Submit your protein sequence to start.</p>
</div>
""", unsafe_allow_html=True)
no_domains = False
error_in_interproscan = False
if submitted:
with st.spinner('Finding domains in sequence using InterProScan. This may take a while...'):
result = find_domains(st.session_state.email, st.session_state.sequence, st.session_state.name)
result_text = result[0]
if result_text == 'Domains found.':
# st.success(result_text + ' You can now see function predictions for the sequence in the "Function predictions" tab.')
st.session_state['domain_df'] = result[1]
elif result_text == 'No domains found.':
st.warning(result_text)
no_domains = True
else:
st.error(result_text)
st.write(f'InterProScan job id: {result[1]}')
st.write(f'InterProScan job response: {result[2]}')
error_in_interproscan = True
# if 'domain_df' in st.session_state:
# with st.expander('Show domains in sequence'):
# st.write(st.session_state.domain_df)
# domains_csv = convert_df(st.session_state.domain_df)
# st.download_button(
# label="Download domains in sequence as CSV",
# data=domains_csv,
# file_name=f"{st.session_state.name}_domains.csv",
# mime="text/csv",
# )
if 'domain_df' not in st.session_state:
if error_in_interproscan:
st.error('Error in InterProScan. Please check InterProScan job id and response.')
else:
with st.spinner('Generating function predictions...'):
cwd = os.getcwd()
# mapping_path = "{}/Domain2GO/data".format(cwd.split("Domain2GO")[0])
mapping_path = './data'
pred_results = generate_function_predictions(st.session_state.domain_df, mapping_path)
pred_result_text = pred_results[0]
if pred_result_text == 'Function predictions found.':
st.success('Function predictions generated.')
st.session_state['pred_df'] = pred_results[1]
elif pred_result_text == 'No predictions made for domains found in sequence.':
st.warning(pred_result_text)
if 'pred_df' in st.session_state:
with st.expander('Show function predictions'):
st.write(st.session_state.pred_df)
pred_csv = convert_df(st.session_state.pred_df)
st.download_button(
label="Download function predictions as CSV",
data=pred_csv,
file_name=f"{st.session_state.name}_function_predictions.csv",
mime="text/csv",
)
# # <div style="background-color:#f0f2f6;padding:10px">
# st.markdown("""
# <div style="position: relative;background-color: #f0f2f6;padding:10px;">
# <div style="position: absolute; bottom: 5px;">
# <p style="color:#b22d2a;font-size:15px;">Disclaimer</p>
# <p style="color:#000000;font-size:14px;">This program is designed to generate predictions for a single protein due to the extended runtime of InterProScan. If you need predictions for multiple UniProtKB/Swiss-Prot proteins, we recommend utilizing our comprehensive protein function prediction dataset available in our <a href="https://github.com/HUBioDataLab/Domain2GO">Github repository</a>.</p>
# </div>
# </div>
# """, unsafe_allow_html=True)
st.markdown("""
<div style="position: relative; width: 700px; height: 880px;">
<div style="position: absolute; bottom: -180px; padding:10px">
<hr style="height:1px;border:none;color:#333;background-color:#333;" />
<p style="color:#b22d2a;font-size:15px;">Disclaimer</p>
<p style="color:#000000;font-size:14px;">This program is designed to generate predictions for a single protein due to the extended runtime of InterProScan. If you need predictions for multiple UniProtKB/Swiss-Prot proteins, we recommend utilizing our comprehensive protein function prediction dataset available in our <a href="https://github.com/HUBioDataLab/Domain2GO">Github repository</a>.</p>
</div>
</div>
""", unsafe_allow_html=True)