Domain2GO / run_domain2go_app.py
Erva Ulusoy
column name modifications
e359f1f
raw
history blame
4.64 kB
import requests
from io import StringIO
from Bio import SeqIO
import os
import time
import pandas as pd
def find_domains(email, sequence, name):
# send request to interproscan api
headers = {
'Content-Type': 'application/x-www-form-urlencoded',
'Accept': 'text/plain',
}
data= {
'email': email,
'stype': 'p',
'sequence': f'{sequence}'}
job_id_response = requests.post('https://www.ebi.ac.uk/Tools/services/rest/iprscan5/run', headers=headers, data=data)
job_id = job_id_response.text
# get results
headers = {
'Accept': 'application/json',
}
job_result_url = f'https://www.ebi.ac.uk/Tools/services/rest/iprscan5/result/{job_id}/json'
json_output = None
entries = dict()
with requests.Session() as s:
# try 10 times if not successful print error
c=0
while c<10:
job_result_response = s.get(job_result_url, headers=headers)
if job_result_response.status_code == 200:
json_output= job_result_response.json()['results'][0]
print('InterProScan job done')
break
else:
time.sleep(60)
c+=1
if json_output is None:
result_text = 'InterProScan job failed'
return [result_text, job_id, job_result_response.text]
else:
for elem in json_output['matches']:
entry = elem['signature']['entry']
location_list = [f"{i['start']}-{i['end']}" for i in elem['locations']]
if type(entry) == dict and entry['type'] == 'DOMAIN':
if entry['accession'] not in entries:
entries[entry['accession']] = {
'name': entry['name'],
# add locations as a list
'locations': location_list
}
else:
try:
entries[entry['accession']]['locations'].extend(location_list)
except AttributeError:
entries[entry['accession']]['locations'] = entries[entry['accession']]['locations'].split(' ')
entries[entry['accession']]['locations'] = [i for i in entries[entry['accession']]['locations'] if i]
entries[entry['accession']]['locations'].extend(location_list)
entries[entry['accession']]['locations'] = list(set(entries[entry['accession']]['locations']))
entries[entry['accession']]['locations'] = sorted([i.split('-') for i in entries[entry['accession']]['locations']], key=lambda x: (int(x[0]), int(x[1])))
entries[entry['accession']]['locations'] = ['-'.join(i) for i in entries[entry['accession']]['locations']]
# entries[entry['accession']]['locations'] = '|'.join(entries[entry['accession']]['locations'])
if entries:
result_text = 'Domains found.'
# create domains dataframe
domains_df = pd.DataFrame.from_dict(entries, orient='index').reset_index()
domains_df['protein_name'] = name
domains_df = domains_df[['protein_name', 'index', 'name', 'locations']]
domains_df.columns = ['protein_name', 'domain_accession', 'domain_name', 'domain_locations']
return [result_text, domains_df]
else:
result_text = 'No domains found.'
return [result_text]
# generate protein function predictions based on domain2go mappings
def generate_function_predictions(domains_df, mapping_path):
# read domain2go mappings
domain2go_df = pd.read_csv(os.path.join(mapping_path, 'finalized_domain2go_mappings.txt'))
print('Domain2GO mappings loaded')
# merge domain2go mappings with domains found in protein sequence
merged_df = pd.merge(domains_df, domain2go_df, left_on='accession', right_on='Interpro')
print('Function predictions generated.')
# if merged_df is empty return
if merged_df.empty:
result_text = 'No function predictions found.'
return [result_text]
else:
merged_df['protein_name'] = domains_df['protein_name'].iloc[0]
merged_df = merged_df[['protein_name', 'GO', 'locations', 's', 'accession', 'name',]]
merged_df.columns = ['protein_name', 'GO_ID', 'domain_locations', 'probability', 'domain_accession', 'domain_name',]
# save protein function predictions
protein_name = domains_df['protein_name'].iloc[0]
result_text= 'Function predictions found.'
return [result_text, merged_df]