Spaces:
Running
Running
import requests | |
from io import StringIO | |
from Bio import SeqIO | |
import os | |
import time | |
import pandas as pd | |
def find_domains(email, sequence, name): | |
# send request to interproscan api | |
headers = { | |
'Content-Type': 'application/x-www-form-urlencoded', | |
'Accept': 'text/plain', | |
} | |
data= { | |
'email': email, | |
'stype': 'p', | |
'sequence': f'{sequence}'} | |
job_id_response = requests.post('https://www.ebi.ac.uk/Tools/services/rest/iprscan5/run', headers=headers, data=data) | |
job_id = job_id_response.text | |
# get results | |
headers = { | |
'Accept': 'application/json', | |
} | |
job_result_url = f'https://www.ebi.ac.uk/Tools/services/rest/iprscan5/result/{job_id}/json' | |
json_output = None | |
entries = dict() | |
with requests.Session() as s: | |
# try 10 times if not successful print error | |
c=0 | |
while c<10: | |
job_result_response = s.get(job_result_url, headers=headers) | |
if job_result_response.status_code == 200: | |
json_output= job_result_response.json()['results'][0] | |
print('InterProScan job done') | |
break | |
else: | |
time.sleep(60) | |
c+=1 | |
if json_output is None: | |
result_text = 'InterProScan job failed' | |
return [result_text, job_id, job_result_response.text] | |
else: | |
for elem in json_output['matches']: | |
entry = elem['signature']['entry'] | |
location_list = [f"{i['start']}-{i['end']}" for i in elem['locations']] | |
if type(entry) == dict and entry['type'] == 'DOMAIN': | |
if entry['accession'] not in entries: | |
entries[entry['accession']] = { | |
'name': entry['name'], | |
# add locations as a list | |
'locations': location_list | |
} | |
else: | |
try: | |
entries[entry['accession']]['locations'].extend(location_list) | |
except AttributeError: | |
entries[entry['accession']]['locations'] = entries[entry['accession']]['locations'].split(' ') | |
entries[entry['accession']]['locations'] = [i for i in entries[entry['accession']]['locations'] if i] | |
entries[entry['accession']]['locations'].extend(location_list) | |
entries[entry['accession']]['locations'] = list(set(entries[entry['accession']]['locations'])) | |
entries[entry['accession']]['locations'] = ';'.join(entries[entry['accession']]['locations']) | |
if entries: | |
result_text = 'Domains found.' | |
# create domains dataframe | |
domains_df = pd.DataFrame.from_dict(entries, orient='index').reset_index() | |
domains_df['protein_name'] = name | |
domains_df = domains_df[['protein_name', 'index', 'name', 'locations']] | |
domains_df.columns = ['protein_name', 'accession', 'name', 'locations'] | |
return [result_text, domains_df] | |
else: | |
result_text = 'No domains found.' | |
return [result_text] | |
# generate protein function predictions based on domain2go mappings | |
def generate_function_predictions(domains_df, mapping_path): | |
# read domain2go mappings | |
domain2go_df = pd.read_csv(os.path.join(mapping_path, 'finalized_domain2go_mappings.txt')) | |
print('Domain2GO mappings loaded') | |
# merge domain2go mappings with domains found in protein sequence | |
merged_df = pd.merge(domains_df, domain2go_df, left_on='accession', right_on='Interpro') | |
print('Function predictions generated.') | |
# if merged_df is empty return | |
if merged_df.empty: | |
result_text = 'No function predictions found.' | |
return [result_text] | |
else: | |
merged_df = merged_df[['accession', 'name', 'locations', 'GO', 's']] | |
merged_df.columns = ['domain_accession', 'domain_name', 'domain_locations', 'GO_id', 'probability'] | |
# save protein function predictions | |
protein_name = domains_df['protein_name'].iloc[0] | |
result_text= 'Function predictions found.' | |
return [result_text, merged_df] | |